Domination Numbers in Graphs Resulting from Shackle Operations with Linkage of any Graph

Ilham Saifudin, Triyanna Widiyaningtyas, Rohmad Wahid Rhomdani, Moh. Dasuki

Abstract


The domination number is the number of dominating nodes in a graph that can dominate the surrounding connected nodes with a minimum number of dominating nodes. This domini number is denoted by γ(G). In this research, we will examine the domination number of the distance between two graphs resulting from the shackle operation with any graph as linkage. This differs from previous research, namely the domination of numbers at one and two distances. This study emphasizes how the results of operations on the shackle are connected to the shackle graph as any graph connects the copy. Any graph here means all graphs are connected and generally accepted. The method used in this research is pattern recognition and axiomatic deductive methods. The pattern detection method examines patterns where a graph's number of dominating points can dominate the connected points around it with a minimum number of dominating nodes. Meanwhile, axiomatic deductive is a research method that uses the principles of deductive proof that apply to mathematical logic by using existing axioms or theorems to solve a problem. The Result of graph S_n with t copies and S_m as linkage, then the two-distance domination number in the graph resulting from the shackle operation is γ_2 (Shack(S_n,S_m,t) )=t-1; graph S_n with t copies and C_m as linkage, then the two-distance domination number in the graph resulting from the shackle operation is γ_2 (Shack(S_n,C_m,t) )={■(t,for 3≤m≤6@⌈n/5⌉(t-1),for m≥7)┤; graph C_n with t copies and S_m as linkage, then the two-distance domination number in the graph resulting from the shackle operation is
γ_2 (Shack(C_n,S_m,t) )={■(t-1,for n=3@t,for 4≤n≤5@⌈n/5⌉t,for n≥6)┤
This research provides benefits and adds to research results in the field of graph theory specialization of two-distance domination numbers in the result graph of shackle operation with linkage any graph.


Keywords


Domination Number; Shackle Operation; Result Graph; Any Graph as Linkage.

Full Text:

DOWNLOAD [PDF]

References


Adaricheva, K., Blake, H. S., Bozeman, C., Clarke, N. E., Haas, R., Messinger, M. E., & Seyffarth, K. (2022). Hamilton Paths in Dominating Graphs of Trees and Cycles. Graphs and Combinatorics, 38(6). https://doi.org/10.1007/s00373-022-02579-8

Ali, A., Furtula, B., Redžepović, I., & Gutman, I. (2022). Atom-bond sum-connectivity index. Journal of Mathematical Chemistry, 60(10), 2081–2093. https://doi.org/10.1007/s10910-022-01403-1

Arshad, M., Hayat, S., & Jamil, H. (2023). The domination number of the king’s graph. Computational and Applied Mathematics, 42(6). https://doi.org/10.1007/s40314-023-02386-8

Ashraful Alam, M., Ghani, M. U., Kamran, M., Shazib Hameed, M., Hussain Khan, R., & Baig, A. Q. (2022). Degree-Based Entropy for a Non-Kekulean Benzenoid Graph. Journal of Mathematics, 2022. https://doi.org/10.1155/2022/2288207

Dakhno, G. S., & Malyshev, D. S. (2023). On a Countable Family of Boundary Graph Classes for the Dominating Set Problem. Journal of Applied and Industrial Mathematics, 17(1), 25–31. https://doi.org/10.1134/S1990478923010039

de Berg, M., & Kisfaludi-Bak, S. (2020). Lower Bounds for Dominating Set in Ball Graphs and for Weighted Dominating Set in Unit-Ball Graphs. In F. V Fomin, S. Kratsch, & E. J. van Leeuwen (Eds.), Treewidth, Kernels, and Algorithms: Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday (pp. 31–48). Springer International Publishing. https://doi.org/10.1007/978-3-030-42071-0_5

Huntala, M., Payu, M. R. F., & Yahya, N. I. (2023). Total Rainbow Connection Number Of Shackle Product Of Antiprism Graph (〖AP〗_3). Jurnal Matematika, Statistika Dan Komputasi, 20(1), 1–9. https://doi.org/10.20956/j.v20i1.24833

Joedo, J. C., Dafik, Kristiana, A. I., Agustin, I. H., & Nisviasari, R. (2022). On the rainbow antimagic coloring of vertex amalgamation of graphs. Journal of Physics: Conference Series, 2157(1). https://doi.org/10.1088/1742-6596/2157/1/012014

Kang, L., & Shan, E. (2020). Signed and Minus Dominating Functions in Graphs. In T. W. Haynes, S. T. Hedetniemi, & M. A. Henning (Eds.), Topics in Domination in Graphs (pp. 301–348). Springer International Publishing. https://doi.org/10.1007/978-3-030-51117-3_9

Khan, A. R., Ghani, M. U., Ghaffar, A., Asif, H. M., & Inc, M. (2023). Characterization of Temperature Indices of Silicates. Silicon. https://doi.org/10.1007/s12633-023-02298-6

Kristiana, A. I., Mursyidah, I. L., Dafik, D., Adawiyah, R., & Alfarisi, R. (2022). Local irregular vertex coloring of comb product by path graph and star graph. Discrete Mathematics, Algorithms and Applications, 15(06), 2250148. https://doi.org/10.1142/S1793830922501488

Maghfiro, S., Dafik, Kristiana, A. I., Nisviasari, R., Slamin, & Agustin, I. H. (2023). A Study of the Rainbow Antimagic Coloring of Double Wheel and Parachute Graphs (Vol. 3). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-138-8_11

Mahapatra, T., & Pal, M. (2022). An investigation on m-polar fuzzy threshold graph and its application on resource power controlling system. Journal of Ambient Intelligence and Humanized Computing, 13(1), 501–514. https://doi.org/10.1007/s12652-021-02914-6

Maryati, T. K., Salman, A. N. M., Baskoro, E. T., Ryan, J., & Miller, M. (2010). On H-supermagic labelings for certain shackles and amalgamations of a connected graph. 83(October 2016), 333–342.

Milano, G., Miranda, E., & Ricciardi, C. (2022). Connectome of memristive nanowire networks through graph theory. Neural Networks, 150, 137–148. https://doi.org/10.1016/j.neunet.2022.02.022

Mofidi, A. (2023). On Dominating Graph of Graphs, Median Graphs, Partial Cubes and Complement of Minimal Dominating Sets. Graphs and Combinatorics, 39(5). https://doi.org/10.1007/s00373-023-02703-2

Movahedi, F., Akhbari, M. H., & Alikhani, S. (2021). The Number of 2-dominating Sets, and 2-domination Polynomial of a Graph. Lobachevskii Journal of Mathematics, 42(4), 751–759. https://doi.org/10.1134/S1995080221040156

Poniman, B., & Fran, F. (2020). Bilangan dominasi eksentrik terhubung pada graf sunlet dan graf bishop. BIMASTER, 09(1), 71–78.

Ponraj, R., Yesu, S., Philip, D., & Kala, R. (2022). 4-Total Difference Cordial Labeling of Some Special Graphs. J. Appl. & Pure Math, 4(2), 51–61.

Prayitno, W. (2015). Implementasi Blended Learning dalam Pembelajaran pada Pendidikan Dasar dan Menengah. Artikel LPMP D.I. Yogyakarta, 1–14.

Queiroz, M., Coelho, F., Torres, L. C. B., Campos, F. V., Lara, G., Alvarenga, W., & Braga, A. de P. (2023). RBF Neural Networks Design with Graph Based Structural Information from Dominating Sets. Neural Processing Letters, 55(4), 4719–4733. https://doi.org/10.1007/s11063-022-11062-7

Saifudin, I. (2017). Bilangan Dominasi Jarak Dua Pada Graf Hasil Operasi Amalgamasi. Jurnal Sistem & Teknologi Informasi Indonesia, 2(1), 31–40.

Shaheen, R., Mahfud, S., & Almanea, K. (2017). On the 2-Domination Number of Complete Grid Graphs. Open Journal of Discrete Mathematics, 07(01), 32–50. https://doi.org/10.4236/ojdm.2017.71004

Taletskii, D. S. (2023). On the Number of Minimum Total Dominating Sets in Trees. Journal of Applied and Industrial Mathematics, 17(1), 213–224. https://doi.org/10.1134/S1990478923010234

Umilasari, R. (2017). Bilangan Dominasi Jarak Dua Pada Graf Hasil Operasi Shackle. Jurnal Sistem & Teknologi Informasi Indonesia, 2(2), 121–127.

Vecchio, F., Miraglia, F., & Maria Rossini, P. (2017). Connectome: Graph theory application in functional brain network architecture. Clinical Neurophysiology Practice, 2, 206–213. https://doi.org/10.1016/j.cnp.2017.09.003

Verma, P., Nagarajan, S., & Raj, A. (2022). Spectral graph theory of brain oscillations—-Revisited and improved. NeuroImage, 249(December 2021). https://doi.org/10.1016/j.neuroimage.2022.118919

Wahyuni, Y., & Utoyo, M. I. (2017). Bilangan Dominasi Jarak-2 Graf Jahangir J n , m. Prosiding SI MaNIs, 1(1), 606–610.

Xue, H., & Li, L. (2023). applied sciences Motion , Static Force , and Efficiency Analysis of Planetary Gear Transmission Based on Graph Theory.

Zhang, C., Xia, D., Chen, H., & Chen, G. (2023). Graph Theory-based Approach for Partial Topology Identification of Stochastic Multi-group Models With Multiple Dispersal. International Journal of Control, Automation and Systems, 21(9), 2969–2979. https://doi.org/10.1007/s12555-022-0356-5

Zhang, X., Rauf, A., Ishtiaq, M., Siddiqui, M. K., & Muhammad, M. H. (2022). On Degree Based Topological Properties of Two Carbon Nanotubes. Polycyclic Aromatic Compounds, 42(3), 866–884. https://doi.org/10.1080/10406638.2020.1753221

Zhuang, W. (2023). Semitotal Domination Multisubdivision Number of a Graph. Iranian Journal of Science, 47(3), 943–949. https://doi.org/10.1007/s40995-023-01450-6




DOI: https://doi.org/10.31764/jtam.v8i2.19675

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ilham Saifudin, Triyanna Widiyaningtyas, Rohmad Wahid Rhomdani, Moh. Dasuki

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: