Algorithm for Constructing Total Graph of Commutative Ring

Rima Meinawati, Vika Yugi Kurniawan, Nughthoh Arfawi Kurdhi

Abstract


Let R be a commutative ring. The total graph of R, denoted by TΓ(R) is a graph whose vertices are all elements of the ring R and every i,j∈R with i≠j, then i and j vertices are connected by edges if and only if i+j∈Z(R), where Z(R) is the set of zero-divisors in R with 0∈Z(R). Python programming is code that is easy to learn, read, understand, and helpful in explaining problems regarding graphs and algebra. In this paper, we determine an algorithm to construct the total graph of ring Z_n using Python. The research methods in this paper is a literature studies. The results generated by the algorithm can be utilized to observe the characteristic patterns displayed by the graph. Based on the algorithm’s constructed graph pattern, several properties of TΓ(Z_n ) can be inferred. For instance, if n is a prime number, then TΓ(Z_n ) is a disconnected graph. On the other hand, if n is a prime number and n≥3, then TΓ(Z_2n ) and TΓ(Z_4n ) is a connected graph, regular graph, Hamiltonian graph, and has a girth gr(TΓ(〖Z〗_n ))=3. In this paper we creating an algorithm to construct total graphs from commutative rings streamlines the construction process, enhances accessibility and utilization of total graphs, and supports parameter variation exploration and application in problem-solving.

 


Keywords


Total graph; Zero-divisors; Python programming.

Full Text:

DOWNLOAD [PDF]

References


Aalipour, G., & Akbari, S. (2016). On the Cayley Graph of a Commutative Ring with Respect to its Zero-divisors. Communications in Algebra, 44(4), 1443–1459. https://doi.org/10.1080/00927872.2015.1027359

Adhikari, M. R., & Adhikari, A. (2014). Basic Modern Algebra with Applications. In Basic Modern Algebra with Applications. https://doi.org/10.1007/978-81-322-1599-8

Akbari, S., Estaji, E., & Khorsandi, M. R. (2015). On the Unit Graph of a Non-commutative Ring. Algebra Colloquium, 22, 817–822. https://doi.org/10.1142/S100538671500070X

Akbari, S., Kiani, D., Mohammadi, F., & Moradi, S. (2009). Journal of Pure and Applied Algebra The total graph and regular graph of a commutative ring. Journal of Pure and Applied Algebra, 213(12), 2224–2228. https://doi.org/10.1016/j.jpaa.2009.03.013

Anderson, D. F., & Badawi, A. (2008). The total graph of a commutative ring. Journal of Algebra, 320(7), 2706–2719. https://doi.org/10.1016/j.jalgebra.2008.06.028

Anderson, D. F., & Badawi, A. (2013). The generalized total graph of a commutative ring. Journal of Algebra and Its Applications, 12(5), 1250212. https://doi.org/10.1142/S021949881250212X

Anderson, D. F., & Lewis, E. F. (2016). A General Theory Of Zero-Divisor Graphs Ove;//Doir A Commutative Ring David F. Anderson and Elizabeth F. Lewis. 20(20), 111–135. https://doi.org/10.24330/ieja.266187

Anderson, D. F., & Weber, D. (2018). The zero-divisor graph of a commutative ring without identity. International Electronic Journal of Algebra, 23(23), 176–202. https://doi.org/10.24330/ieja.373663

Any, R. D., & Hidayah, I. N. (2021). The Girth of the Total Graph of ℤ n . Proceedings of the 1st International Conference on Mathematics and Mathematics Education (ICMMEd 2020), 550(Icmmed 2020), 308–310. https://doi.org/10.2991/assehr.k.210508.080

Basak, M., Saha, L., & Tiwary, K. (2019). Metric Dimension of Zero-Divisor Graph for the Ring Z n. 6(6), 74–78. https://www.isroset.org/pub_paper/IJSRMSS/10-IJSRMSS-02811.pdf

Beck, I. (1988). Coloring of commutative rings. Journal of Algebra, 116(1), 208–226. https://doi.org/10.1016/0021-8693(88)90202-5

Chartrand, G., Lesniak, L., & Zhang, P. (2016). GRAPHS & DIGRAPHS (SIXTH EDITION). https://doi.org/10.1201/b19731

Đurić, A., Jevđenić, S., Oblak, P., & Stopar, N. (2018). The total zero-divisor graph of commutative rings. 1–15. https://doi.org/10.1142/S0219498819501901

Hartati, T., & Kurniawan, V. Y. (2023). Construct The Triple Nilpotent Graph of Ring Using Python. AIP Conf., 2886, 020004. https://doi.org/10.1063/5.0154928

Ju, T., Wu, M., & Nantong. (2014). On Iteration Digraph And Zero-Divisor Graph Of The Ring Zn. Czechoslovak Mathematical Journal, 64(3), 611–628. doi:10.1007/s10587-014-0122-9

Kalita, S., Patra, K., Patra, K., & Kalita, S. (2014). Prime Graph of the Commutative Ring Z_n. Matematika, 30(1), 59–67. https://www.researchgate.net/publication/344545945

Kansal, N., Kaur, B., Garg, P., & Sinha, D. (2022). On Another Class of Strongly Perfect Graphs. Mathematics, 10(12), 1–20. https://doi.org/10.3390/math10122014

Mir, M. K. (2014). Effect of Basic Set Operations on Graph Theory. 1(6), 9–16. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d5b8882c9056b0d47969260e0ddb2fc38f224475

Mishra, A., & Patra, K. (2020). Domination and independence parameters in the total graph of Zn with respect to nil ideal. IAENG International Journal of Applied Mathematics, 50(3), 707–712. https://www.iaeng.org/IJAM/issues_v50/issue_3/IJAM_50_3_30.pdf

Mondal, S., Imran, M., De, N., & Pal, A. (2023). Topological Indices of Total Graph and Zero-divisor Graph of Commutative Ring: A Polynomial Approach. Complexity, 2023. https://doi.org/10.1155/2023/6815657

Nikmehr, M. J., Nikandish, R., & Bakhtyiari, M. (2017). More on the annihilator graph of a commutative ring. Hokkaido Mathematical Journal, 46, 107–118. DOI: 10.14492/hokmj/1498788098

Saabith, A. L. S., Fareez, M., & Vinothraj, T. (2019). Python Current Trend Applications- An Overview. Scientific Journal of Impact Factor (SJIF): 5.71, 6(10). https://www.researchgate.net/publication/344569950_Python_current_trend_applications-an_overview

Tangirov, K. E., & Rakhimov, O. S. (2023). Considerations On Modern Programming Languages. Mental Enlightenment Scientific –Methodological Journal, 180–187. https://doi.org/https://doi.org/10.37547/mesmj-V4-I3-

Tapanyo, W., Tongpikul, T., & Kaewpradit, S. (2022). gcd-Pairs in Zn and their graph representations. 1–11. http://arxiv.org/abs/2206.01847

Tian, Y., & Li, L. (2022). Comments on the Clique Number of Zero-Divisor Graphs of Zn. Journal of Mathematics, 2022. https://doi.org/10.1155/2022/6591317




DOI: https://doi.org/10.31764/jtam.v8i2.19850

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Rima Meinawati, Vika Yugi Kurniawan, Nughthoh Arfawi Kurdhi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: