Algorithm for Constructing Total Graph of Commutative Ring
Abstract
Let R be a commutative ring. The total graph of R, denoted by TΓ(R) is a graph whose vertices are all elements of the ring R and every i,j∈R with i≠j, then i and j vertices are connected by edges if and only if i+j∈Z(R), where Z(R) is the set of zero-divisors in R with 0∈Z(R). Python programming is code that is easy to learn, read, understand, and helpful in explaining problems regarding graphs and algebra. In this paper, we determine an algorithm to construct the total graph of ring Z_n using Python. The research methods in this paper is a literature studies. The results generated by the algorithm can be utilized to observe the characteristic patterns displayed by the graph. Based on the algorithm’s constructed graph pattern, several properties of TΓ(Z_n ) can be inferred. For instance, if n is a prime number, then TΓ(Z_n ) is a disconnected graph. On the other hand, if n is a prime number and n≥3, then TΓ(Z_2n ) and TΓ(Z_4n ) is a connected graph, regular graph, Hamiltonian graph, and has a girth gr(TΓ(〖Z〗_n ))=3. In this paper we creating an algorithm to construct total graphs from commutative rings streamlines the construction process, enhances accessibility and utilization of total graphs, and supports parameter variation exploration and application in problem-solving.
Keywords
Full Text:
DOWNLOAD [PDF]References
Aalipour, G., & Akbari, S. (2016). On the Cayley Graph of a Commutative Ring with Respect to its Zero-divisors. Communications in Algebra, 44(4), 1443–1459. https://doi.org/10.1080/00927872.2015.1027359
Adhikari, M. R., & Adhikari, A. (2014). Basic Modern Algebra with Applications. In Basic Modern Algebra with Applications. https://doi.org/10.1007/978-81-322-1599-8
Akbari, S., Estaji, E., & Khorsandi, M. R. (2015). On the Unit Graph of a Non-commutative Ring. Algebra Colloquium, 22, 817–822. https://doi.org/10.1142/S100538671500070X
Akbari, S., Kiani, D., Mohammadi, F., & Moradi, S. (2009). Journal of Pure and Applied Algebra The total graph and regular graph of a commutative ring. Journal of Pure and Applied Algebra, 213(12), 2224–2228. https://doi.org/10.1016/j.jpaa.2009.03.013
Anderson, D. F., & Badawi, A. (2008). The total graph of a commutative ring. Journal of Algebra, 320(7), 2706–2719. https://doi.org/10.1016/j.jalgebra.2008.06.028
Anderson, D. F., & Badawi, A. (2013). The generalized total graph of a commutative ring. Journal of Algebra and Its Applications, 12(5), 1250212. https://doi.org/10.1142/S021949881250212X
Anderson, D. F., & Lewis, E. F. (2016). A General Theory Of Zero-Divisor Graphs Ove;//Doir A Commutative Ring David F. Anderson and Elizabeth F. Lewis. 20(20), 111–135. https://doi.org/10.24330/ieja.266187
Anderson, D. F., & Weber, D. (2018). The zero-divisor graph of a commutative ring without identity. International Electronic Journal of Algebra, 23(23), 176–202. https://doi.org/10.24330/ieja.373663
Any, R. D., & Hidayah, I. N. (2021). The Girth of the Total Graph of ℤ n . Proceedings of the 1st International Conference on Mathematics and Mathematics Education (ICMMEd 2020), 550(Icmmed 2020), 308–310. https://doi.org/10.2991/assehr.k.210508.080
Basak, M., Saha, L., & Tiwary, K. (2019). Metric Dimension of Zero-Divisor Graph for the Ring Z n. 6(6), 74–78. https://www.isroset.org/pub_paper/IJSRMSS/10-IJSRMSS-02811.pdf
Beck, I. (1988). Coloring of commutative rings. Journal of Algebra, 116(1), 208–226. https://doi.org/10.1016/0021-8693(88)90202-5
Chartrand, G., Lesniak, L., & Zhang, P. (2016). GRAPHS & DIGRAPHS (SIXTH EDITION). https://doi.org/10.1201/b19731
Đurić, A., Jevđenić, S., Oblak, P., & Stopar, N. (2018). The total zero-divisor graph of commutative rings. 1–15. https://doi.org/10.1142/S0219498819501901
Hartati, T., & Kurniawan, V. Y. (2023). Construct The Triple Nilpotent Graph of Ring Using Python. AIP Conf., 2886, 020004. https://doi.org/10.1063/5.0154928
Ju, T., Wu, M., & Nantong. (2014). On Iteration Digraph And Zero-Divisor Graph Of The Ring Zn. Czechoslovak Mathematical Journal, 64(3), 611–628. doi:10.1007/s10587-014-0122-9
Kalita, S., Patra, K., Patra, K., & Kalita, S. (2014). Prime Graph of the Commutative Ring Z_n. Matematika, 30(1), 59–67. https://www.researchgate.net/publication/344545945
Kansal, N., Kaur, B., Garg, P., & Sinha, D. (2022). On Another Class of Strongly Perfect Graphs. Mathematics, 10(12), 1–20. https://doi.org/10.3390/math10122014
Mir, M. K. (2014). Effect of Basic Set Operations on Graph Theory. 1(6), 9–16. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d5b8882c9056b0d47969260e0ddb2fc38f224475
Mishra, A., & Patra, K. (2020). Domination and independence parameters in the total graph of Zn with respect to nil ideal. IAENG International Journal of Applied Mathematics, 50(3), 707–712. https://www.iaeng.org/IJAM/issues_v50/issue_3/IJAM_50_3_30.pdf
Mondal, S., Imran, M., De, N., & Pal, A. (2023). Topological Indices of Total Graph and Zero-divisor Graph of Commutative Ring: A Polynomial Approach. Complexity, 2023. https://doi.org/10.1155/2023/6815657
Nikmehr, M. J., Nikandish, R., & Bakhtyiari, M. (2017). More on the annihilator graph of a commutative ring. Hokkaido Mathematical Journal, 46, 107–118. DOI: 10.14492/hokmj/1498788098
Saabith, A. L. S., Fareez, M., & Vinothraj, T. (2019). Python Current Trend Applications- An Overview. Scientific Journal of Impact Factor (SJIF): 5.71, 6(10). https://www.researchgate.net/publication/344569950_Python_current_trend_applications-an_overview
Tangirov, K. E., & Rakhimov, O. S. (2023). Considerations On Modern Programming Languages. Mental Enlightenment Scientific –Methodological Journal, 180–187. https://doi.org/https://doi.org/10.37547/mesmj-V4-I3-
Tapanyo, W., Tongpikul, T., & Kaewpradit, S. (2022). gcd-Pairs in Zn and their graph representations. 1–11. http://arxiv.org/abs/2206.01847
Tian, Y., & Li, L. (2022). Comments on the Clique Number of Zero-Divisor Graphs of Zn. Journal of Mathematics, 2022. https://doi.org/10.1155/2022/6591317
DOI: https://doi.org/10.31764/jtam.v8i2.19850
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Rima Meinawati, Vika Yugi Kurniawan, Nughthoh Arfawi Kurdhi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: