Implementation of Data Mining and Spatial Mapping in Determining National Food Security Clusterization
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Aggarwal, C.C. & Reddyck. (2014). Data Clustering Algoritms and Applications. CRC Press. https://doi.org/10.1201/9781315373515
Arbin, N., N.S. Suhaimi, N.Z. Mokhtar & Z. Othman. (2015). Comparative Analysis between K-Means and K-Medoids for Statistical Clustering. 2015 Third International Conference on Artificial Intelligence, Modelling and Simulation, 116–121. doi: https://doi.org/10.1109/AIMS.2015.82
Arora, P. & Varshney, S. (2016). Analysis of K-Means and K-Medoids Algorithm For Big Data. Procedia - Procedia Comput. Sci. 78:507–512. https://doi:10.1016/j.procs.2016.02.095
Bhat, A. (2014). K-Medoids Clustering Using Partitioning Around Medoids for Performing Face Recognition. International Journal of Soft Computing, Mathematics and Control (IJSCMC), 3–4. https://doi.org/10.14810/IJSCMC.2014.3301
Badan Pusat Statistik, Statistik Indonesia - Statistical Yearbook of Indonesia 2022, Badan Pusat Statistik BPS-Statistics Indonesia, 2022 https://www.bps.go.id/id/publication/2022/02/25/0a2afea4fab72a5d052cb315/statistik-indonesia-2022.html
Chen, Y., H. Li, H. Lin, Y. Wang & Y. Zhao. (2023). Computers and Geotechnics Critical Slip Line Recognition and Extraction Method of Slope Based on Modified K-Medoid Clustering Algorithm. Comput. Geotech 15 (105125). doi:https://doi:10.1016/j.compgeo.2022.105125.
Chen, Z, H. Li, H. Lin, Y. Wang, and Y. Zhao. (2022). A New Parallel Adaptive Structural Reliability Analysis Method Based on Importance Sampling and K-Medoids Clustering. Reliab. Eng. Syst. Saf. 218 (108124). doi: https://doi:10.1016/j.ress.2021.108124.
Chikohora, T.T. (2014). A Study of the Factors Considired When Choosing an Appropriate Data Mining Algorithm. International Journal of Soft Computing and Engineering 4 (3):42–45. https://www.ijsce.org/wp-content/uploads/papers/v4i3/C2270074314.pdf
E. Irwansyah, M. F. (2015). Advanced Clustering Teori Dan Aplikasi. Yogyakarta: Deepublish. https://balaiyanpus.jogjaprov.go.id/opac/detail-opac?id=322626
Harikumar, S. & Pv, S. (2015). K-Medoid Clustering for Heterogeneous DataSets, 70:226–237. doi:https://doi:10.1016/j.procs.2015.10.077.
Indraputra, R.A. & Fitriana, R. (2020). K-Means Clustering Data COVID-19. Jurnal Teknik Industri 10, (3):275–282. doi: https://doi.org/10.25105/jti.v10i3.8428.
Kaur, K.N. (2014). K-Medoid Clustering Algorithm- A Review. International Journal of Computer Application and Technology 14. https://www.academia.edu/8446443/K_Medoid_Clustering_Algorithm_A_Review
Khatami, A., S. Mirghasemi, A. Khosravi, C. Peng & S. Nahavandi. (2017). A New PSO-Based Approach to Fire Flame Detection Using K-Medoids Clustering. Expert Syst. Appl, 68:69–80. doi:https://doi:10.1016/j.eswa.2016.09.021.
Maheshwari, A. (2015). Data Analytics Mode Accessible. https://dokumen.pub/data-analytics-made-accessible-t-8692526.html
Pinheiro, D. N., D. Aloise & S. J. Blanchard. (2020). Convex Fuzzy k -Medoids Clustering. Fuzzy Sets Syst, 389:66–92. doi:https://doi:10.1016/j.fss.2020.01.001.
Pramesti, F.D. (2017). Implementasi Metode K-Medoids Clustering Untuk Pengelompokkan Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Hotspot). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 723–732. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/204
Pusat Data Informasi Pertanian Sekretariat Jenderal, Statistik Ketahanan PanganTahun 2022, (2022) 138–138. https://satudata.pertanian.go.id/assets/docs/publikasi/Statistik_Ketahanan_Pangan_2022.pdf
Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian, Statistik Ketahanan Pangan Tahun 2022 Volume 2 Nomor 1, Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian, 2022. https://satudata.pertanian.go.id/assets/docs/publikasi/Statistik_Ketahanan_Pangan_2022.pdf
Rendy, H.D. (2014). Perbandingan Metode Clustering Menggunakan Metode Single Linkage Dan K-Means Pada Pengelompokkan Dokumen. JSM STMIK Mikroskil, 76–77. https://media.neliti.com/media/publications/280965-perbandingan-metode-clustering-menggunak-bf005dbb.pdf
Shen, Y., D. Zhang, R. Wang, J. Li & Z. Huang. (2023). Transportation Geotechnics SBD-K-Medoids-Based Long-Term Settlement Analysis of Shield Tunnel. Transp. Geotech, 42(101053). doi:https://doi:10.1016/j.trgeo.2023.101053.
Shukur, B.K. & S.Z.N. Alrashid. (2014). Evaluation of Clustering Image Using Steady State Genetic and Hybrid K-Harmonic Clustering Algorithms. IJCCCE, 14 (1):166–173. https://www.iasj.net/iasj/download/4f003c95c33607ee
Sindi, S., W.R.O. Ningse, I.A. Sihombing, F.I. RHzer & D. Hartama. (2020). Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran COVID-19 Di Indonesia. Jurnal Teknologi Informasi, 4 (1):166–173. doi:https://doi.org/10.36294/jurti.v4i1.1296.
Sitompul, B.J.D., O.S. Sitompul & P. Sihombing. (2019). Enhancement Clustering Evaluation Result of Davies-Bouldin Index with Determining Initial Centroid of K-Means Algorithm. IOP Conf. Series: Journal of Physics, 1235(1):6–12. doi:https://doi.org/10.1088/1742-6596/1235/1/012015.
Sucipto, S., M.S. Al-Mubarok & D.T. Setiyawan. (2021). Hierarchical Clustering Bahan Menu Di Kantin Universitas Untuk Menunjang Implementasi Sistem Jaminan Halal. Jurnal Teknologi Industri Pertanian, 31(1):103–124. doi:https://doi.org/10.1201/b19706.
Sun, D., H. Fei & Q. Li. (2018). A Bisecting K-Medoids Clustering Algorithm Based on Cloud Model, 308–315. doi:https://doi:10.1016/j.ifacol.2018.08.301.
Sureja, N., B. Chawda & A. Vasant. (2022). An Improved K -Medoids Clustering Approach Based on the Crow Search Algorithm. J. Comput. Math. Data Sci., 3(100034). doi:https://doi:10.1016/j.jcmds.2022.100034.
Tan, P.N., Steinbach, M. & Karpatne, A. (2019). Introduction to Data Mining Second Edition. Pearson Education Limited. https://link.springer.com/chapter/10.1007/978-1-4302-3325-1_14
Thakare, Y.S. & S.B. Bagal. (2015). Performance Evaluation of K-Means Clustering Algorithm with Various Distance Metrics. International Journal of Computer Applications, 110(11):12–16. doi:https://doi.org/10.5120/19360-0929.
Wira, B., Budianto, E. Alexius, Wiguna & S. Anggri. (2019). Implementasi Metode K-Medoids Clustering Untuk Mengetahui Pola Pemilihan Program Stusi Mahasiswa Baru Tahun 2018 Di Universitas Kanjuruhan Malang. Jurnal Terapan Sains Dan Teknologi, 55–57. https://doi.org/10.21067/jtst.v1i3.3046
Yu, D., G. Liu, M. Guo & X. Liu. (2018). An Improve d K-Medoids Algorithm Based on Step Increasing and Optimizing Medoids, 92:464–473. doi:https://doi:10.1016/j.eswa.2017.09.052.
Zhang, Y. & P. Shang. (2022). Communications in Nonlinear Science and Numerical Simulation KM-MIC : An Improved Maximum Information Coefficient Based on K-Medoids Clustering. Commun. Nonlinear Sci. Nu Mer. Simul, 106418:111. doi:https://doi:10.1016/j.cnsns.2022.106418.
DOI: https://doi.org/10.31764/jtam.v8i3.19912
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Sifriyani, I Nyoman Budiantara, M. Fariz Fadillah Mardianto, Eka Riche Febriyani, Nurul Rizky Chairunnisa, Asyifa Charmadya Putri
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: