The Application of the Classical Assumption Test in Multiple Linear Regression Analysis (a Case Study of the Preparation of the Allometric Equations of Young Makila)

Gun Mardiatmoko

Abstract


The preparation of allometric equations generally uses multiple linear regression equations. The use of this regression equation is usually not carried out through various tests but goes directly to the t test and F test stages. Therefore, this paper aims to provide an example of determining the regression equation through the classical assumption test stages. Makila (Litsea angulata BI) was chosen as an example because it provides environmental services, especially in dealing with climate change and has not been widely studied. The research method used is a quantitative method. Destructive sampling was taken and the material used consisted of 40 young Makila plants planted in polybags next to the greenhouse at the Faculty of Agriculture, Pattimura University, Ambon. The diameter of each sample was measured from the ground surface to a height of 5 cm and numbered 1 to 40. After being coded, the plant samples were cut down and all young trees were divided into stem segments, branches, twigs, leaves and roots. The root segments were collected carefully to facilitate their separation from the soil in polybags. The parts of the roots that still contain soil are cleaned with a machete and brush until they are free of soil and other dirt. Next, each segment was weighed for its wet weight (in g) and dry weight, thus enabling the determination of the biomass content (in g) for each segment. Data analysis was carried out using the Multiple Linear Regression Equation method. The regression model was examined for normality and suitability in predicting independent variables, ensuring there were no issues with multicollinearity, heteroscedasticity, and autocorrelation. The results of the normality test showed that the significance value for the remaining data was 0.813 > 0.05, indicating normal distribution. TThe results of the multicollinearity test show that there is no multicollinearity problem, this is indicated by the VIF value of the two independent variables (tree diameter and tree height each 1.049) < 10 and the Tolerance value (tree diameter and tree height 0.953 each) > 0.100. The results of the heteroscedasticity test show that the two independent variables have a significance value of more than 0.05. The results of the autocorrelation test show the Durbin Watson (DW) value = 1.956 with a range of 1.65 – 2.35 which means there is no correlation problem. The results yielded a multiple linear regression: Y = -1131.146 + 684.799X1 + 4.276X2, where Y is biomass, X1 is the diameter, and X2 is the tree height. Based on the results of the t-test: variable X1 partially affected Y while variable X2 partially had no effect on Y. The F-test indicated that variables X1 and X2 jointly affected Y with R Square: 0.919 or 91.9% and the rest was influenced by other unexplored factors. To simplify biomass prediction and field measurement, a regression equation that used only 1 independent variable, namely tree diameter, was used for the experiment. Allometric equation only used 1 variable, Y = - 1,084,626 + 675,090 X1, where X1 = tree diameter, Y = Total biomass with R = 0.957, and R square = 0.915. The regression equation for young Makila plant provides assurance that the regression equation obtained is accurate in estimation, unbiased and consistent. This is because in data processing classical assumptions have been tested. This equation can save time, costs and energy, as well as make measurements easier in the field so that future researchers can develop allometric equations in other plants for efficiency.

 


Keywords


Allometric equation; Classicalassumption test; Biomass; Sapling; Climate change.

Full Text:

DOWNLOAD [PDF]

References


Abdillah, M. H. ., & Aldi, M. (2020). Aplikasi Limbah Padat Karet Remah Pada Tanah Podsolik Merah Kuning Terhadap Ketersediaan Hara Makro Dan Perbaikan Sifat Fisika Tanah. EnviroScienteae, 16(2), 264–275. https://doi.org/10.20527/es.v16i2.9658

Almurdani, M., Hendra, R., & Teruna, H. Y. (2023). Antioxidant activities of medang lendir (Litsea glutinosa) stem bark. Pharmacy Education, 23(2), 122–125. https://doi.org/10.46542/pe.2023.232.122125

Bevans, R. (2020). Akaike Information Criterion | When & How to Use It ( Example ). https://www.scribbr.com/statistics/akaike-information-criterion/

Bevans, R. (2023). Multiple Linear Regression | A Quick Guide ( Examples ). Scribbr. https://www.scribbr.com/statistics/multiple-linear-regression/

Cahyandari, R.; Hisani, N. (2012). Model Regresi Linier Berganda Menggunakan Penaksir Parameter Regresi Robust M-Estimator (Studi Kasus: Produksi Padi di Provinsi Jawa Barat Tahun 2009). Istek, VI(1), 85–92. https://journal.uinsgd.ac.id/index.php/istek/article/view/291

Chandra, Y. I., Riastuti, M., Tinggi, S., Informatika, M., & Sti, J. (2022). Aplikasi Perhitungan Statistik Koefisien Regresi Korelasi Linier Untuk Produksi Minyak dan Gas Bumi. Jurnal Esensi Infokom, 6(2), 19–25. https://doi.org/10.55886/infokom.v6i2.500

Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7(1), e623. https://doi.org/10.7717/peerj-cs.623

Fadillah, M. (2023). Estimasi biomassa dan cadangan karbon pohon di kawasan konservasi Taman Wisata Alam (TWA) Iboih, Kota Sabang. Universitas Islam Negeri Ar-Raniry. https://repository.ar-raniry.ac.id/id/eprint/32994/

Fajriansyah;Diana, R.; Matius, P. (2019). Profil Pohon pada jenis Litsea spp . di Hutan Pendidikan. Makila, 13(2), 85–100. https://doi.org/10.30598/makila.v13i2.2435

Fern, K. (2024). Tropical Plants Database. Australian National Botanic Gardens. https://ntbg.org/database/plants/

Fitriyanti;, Qalbiah, S. ., & Sayakti, P. . (2020). Identifikasi Kulit Batang Kalangkala (Litsea Angulata Bi) Secara Makroskopik, Mikroskopik, Dan Skrining Fitokimia. Parapemikir, 9(2), 1–9. https://doi.org/10.30591/pjif.v

Ghozali, I. (2016). Application of multivariete analysis with IBM SPSS 23 program. Semarang: Diponegoro University Publishing Agency.

Goetz, S. J., Hansen, M., Houghton, R. A., Walker, W., Laporte, N., & Busch, J. (2015). Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environmental Research Letters, 10(12), 123001. https://doi.org/10.1088/1748-9326/10/12/123001

Hassler, M. (2023). World Plants. Synonymic Checklist and Distribution of the World Flora. Version 16.3. https://doi.org/10.48580/dfvll-3dd

Kamle, M., Mahato, D. K., Lee, K. E., Bajpai, V. K., Gajurel, P. R., Gu, K. S., & Kumar, P. (2019). Ethnopharmacological Properties and Medicinal Uses of Litsea cubeba. Plants, 8(150), 1–13. https://doi.org/10.3390/plants8060150

Karyati; Ipor, Isa B; Jusoh, Ismail; Wasli, M. E. (2021). Allometric Equations to Estimate the Aboveground Biomass of Seedling and Sapling Plants in 10 and 20 Years Old of Secondary Forests in Sarawak , Malaysia. Proceedings of the Joint Symposium on Tropical Studies (JSTS-19), 11(1), 216–224. https://doi.org/10.2991/absr.k.210408.036

Kassim, A.R.;Sabri, M.D.M; Kamarudin, M.F.; Birigazzi, L. (2014). Inventory of Tree Biomass and Volume Allometric Equations in Southeast Asia (Issue June). UN-REDD PROGRAMME. https://www.un-redd.org/document-library/inventory-volume-and-biomass-tree-allometric-equations-southeast-asia-2018-update

Mardiatmoko, G. (2016). Allometric Equations For Predicting Above And Below-Ground Biomass Of Young Rain Tree [Albizia Saman (JACQ.) Merr.] To Handle Climate Change. Asian Journal of Microbiology , Biotechnology & Environmental Sciences, 18(4), 821–830. http://www.envirobiotechjournals.com/article_abstract.php?aid=7365&iid=221&jid=1

Mardiatmoko, G. (2022). Allometric Equations For Predicting Biomass Of Young Canarium Tree ( Canarium indicum L .) To Handle Climate Change. AMA, 53(01), 5471–5482. https://www.shin-norinco.com/article/allometric-equations-for-predicting-biomass-of-young-canarium-tree-canarium-indicum-l-to-handle-climate-change

Mondal, H., & Mondal, S. (2016). Sample size calculation to data analysis of a correlation study in Microsoft Excel®: A hands-on guide with example. Int J Clin Exp Physiol, 3(4), 180–189. https://ijcep.org/index.php/ijcep/article/view/288

Padilah, T.N; Adam, R. . (2019). Analisis regresi linier berganda dalam estimasi produktivitas tanaman padi di kabupaten karawang 1,2). Fibonacci, 5(2), 117–128. https://doi.org/10.24853/fbc.5.2.117-128

Putri, A. S. (2020). Toxicity, antioxidant ability and inhibition of oral pathogens by monoterpene-rich essential oil of Litsea angulata Blume. AGRICULTURE AND NATURAL RESOURCES, 54(1), 1–6. https://li01.tci-thaijo.org/index.php/anres/article/view/242192

Ramana, K. V., & Raju, A. J. S. (2017). Traditional and commercial uses of Litsea glutinosa ( Lour .) C . B . Robinson ( Lauraceae ). Journal of Medicinal Plants Studies, 5(3), 89–91. https://www.semanticscholar.org/paper/Traditional-and-commercial-uses-of-Litsea-glutinosa-Ramana-Raju/3343744d57935c2511beab22bd712a8d6cbe91ce

Sahureka, M., Hadijah, M., & Marasabessy, H. (2021). Contribution of agrosilvopastoral pattern to sustainable communities economic improvement (study in Namaa Hamlet, Pelauw Village, Haruku Island Sub-District, Central Maluku Regency). IOP Conference Series: Earth and Environmental Science, 883(1), 12071. https://doi.org/10.1088/1755-1315/883/1/012071

Sapra, R. L. (2014). Using R 2 with caution. Current Medicine Research and Practice, 4(3), 130–134. https://doi.org/10.1016/j.cmrp.2014.06.002

Siruru, H. ., & Titarsole, J. (2015). Kandungan dan komponen kimia kayu makila pada arah aksial. Makila, IX(1), 52–62. https://docplayer.info/72167774-Kandungan-dan-komponen-kimia-kayu-makila.html

Thippawan, S., Chowtiwuttakorn, K., & Pongpattananurak, N. (2023). Allometric Models to Estimate the Biomass of Tree Seedlings from Dry Evergreen Forest in Thailand. Forests, 14(1), 725. https://doi.org/10.3390/f14040725

Uyanik, G.K;.Güler, N. (2013). A Study on Multiple Linear Regression Analysis. Procedia - Social and Behavioral Sciences, 106(1), 234–240. https://doi.org/10.1016/j.sbspro.2013.12.027

Wahyuni, H., & Suranto, S. (2021). Dampak deforestasi hutan skala besar terhadap pemanasan global di Indonesia. JIIP: Jurnal Ilmiah Ilmu Pemerintahan, 6(1), 148–162. https://doi.org/10.14710/jiip.v6i1.10083

Zach. (2020). What Are Standardized Residuals ? https://www.statology.org/standardized-residuals/

Zaenal, M. S., Tiryana, T., & Muhdin, M. (2020). Allometric models for estimating tree biomass of dryland secondary forest in East Halmahera. Jurnal Wasian, 7(2), 87–101. http://ejournal.forda-mof.org/ejournal-litbang./index.php/JWAS/article/view/5948




DOI: https://doi.org/10.31764/jtam.v8i3.22179

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Gun Mardiatmoko

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: