Forecasting Roof Tiles Production with Comparison of SMA and DMA Methods Based on n-th Ordo 2 and 4

Mesra Betty Yel, Tundo Tundo, Veri Arinal

Abstract


This research aims to predict roof tile production trends at one of the roof tile companies in Kebumen to assist company management in determining and providing management recommendations for the tile production that occurs. A comparison of Single Moving Average (SMA) and Double Moving Average (DMA) Forecasting methods was used to better accommodate trends in roof tile production data optimally. Where the forecast is presented for several steps ahead, and is equipped with a value measuring the accuracy of the forecast using Mean Absolute Percentage Error (MAPE), on roof tile production transaction data over 60 months, namely January-December 2019 to January-December 2023 to produce a monthly forecast for predicting roof tile production with n-th ordo 2 and 4. The total sample of training data processed was 1,415,987 records which were roof tile production transaction data, as well as data in January 2024 as test data (to test the accuracy of the forecast). The results of testing the forecast results produced a MAPE calculation of 6.6% for SMA with n-th ordo 2, while for n-th ordo 4 it was 7.2%. The MAPE value for DMA is 6.3% for n-th ordo 2, while for n-th ordo 4 it is 8.2%, which means the accuracy level is very good, namely above 90%. Based on the MAPE results obtained, the DMA method with n-th ordo 2 is a suitable method for carrying out periodic forecasting for roof tile companies in carrying out the production process to maintain stability and avoid unexpected events.

Keywords


Forecasting; Double Moving Average; Roof tile; Single Moving Average; Mean Absolute Percentage Error.

Full Text:

DOWNLOAD [PDF]

References


Alex, M. A. H., & Nur Rahmawati. (2023). Application of the Single Moving Average, Weighted Moving Average and Exponential Smoothing Methods For Forecasting Demand At Boy Delivery. Tibuana, 6(1), 32–37. https://doi.org/10.36456/tibuana.6.1.6442.32-37

Astuti, Y., Novianti, B., Hidayat, T., & Maulina, D. (2019). Penerapan Metode Single Moving Average Untuk Peramalan Penjuaan Mainan Anak. Seminar Nasional Sistem Informasi Dan Teknik Informatika Sensitif, 4(July), 255. https://ejurnal.dipanegara.ac.id/index.php/sensitif/article/view/552

Bhuyan, H., Kol, M., A. Adediran, D., Oluwaseyi Jessy, B., & Tundo, T. (2023). Predicting Uterine Fibroids with Multiple Classifiers: An Analysis. SciWaveBulletin, 01(02), 18–26. https://doi.org/10.61925/swb.2023.1203

Dewi, E. N. S., & Chamid, A. A. (2019). Implementation of Single Moving Average Methods For Sales Forecasting Of Bag In Convection Tas Loram Kulon. Jurnal Transformatika, 16(2), 113. https://doi.org/10.26623/transformatika.v16i2.1047

Eko siswanto, Eka Satria Wibawa, & Mustofa, Z. (2021). Implementasi Aplikasi Sistem Peramalan Persedian Barang Menggunakan Metode Single Moving Average Berbasis Web. Elkom : Jurnal Elektronika Dan Komputer, 14(2), 224–233. https://doi.org/10.51903/elkom.v14i2.515

Febrian, D., Idrus, S. I. Al, & Nainggolan, D. A. J. (2020). The Comparison of Double Moving Average and Double Exponential Smoothing Methods in Forecasting the Number of Foreign Tourists Coming to North Sumatera. Journal of Physics: Conference Series, 1462(1). https://doi.org/10.1088/1742-6596/1462/1/012046

Hudiyanti, C. V., Bachtiar, F. A., & Setiawan, B. D. (2019). Perbandingan Double Moving Average dan Double Exponential Smoothing untuk Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Bandara Ngurah Rai. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(3), 2667–2672. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4791

Khairina, D. M., Khairunnisa, R., Hatta, H. R., & Maharani, S. (2021). Comparison of the trend moment and double moving average methods for forecasting the number of dengue hemorrhagic fever patients. Bulletin of Electrical Engineering and Informatics, 10(2), 978–987. https://doi.org/10.11591/eei.v10i2.2711

Khan, I., & Ahmad, A. R. (2019). Tracking Student Performance in Introductory Programming by Means of Machine Learning. In 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC) (pp. 1–6). IEEE. https://doi.org/10.1109/ICBDSC.2019.8645608

Maknunah, J. (2019). Analisis Perbandingan Double Moving Average dan Holt’s Model Penerimaan Anggota Baru Koperasi “SBW” Jawa Timur. Jurnal Ilmiah Komputasi, 18(4). https://doi.org/10.32409/jikstik.18.4.2656

Mustapa, R., Latief, M., & Rohandi, M. (2019). Double moving average method for predicting the number of patients with dengue fever in Gorontalo City. Sciences and Technology (GCSST), 2, 332–337. Retrieved from https://series.gci.or.id

Ogundare, O., & Wiggins, N. (2018). Identifying Sub-documents in a Composite Scanned Document Using Naive Bayes, Levenshtein Distance and Domain Driven Knowledge Base. In 5th International Conference on Soft Computing and Machine Intelligence, ISCMI 2018 (pp. 84–87). IEEE. https://doi.org/10.1109/ISCMI.2018.8703245

Rahat, A. M., Kahir, A., Kaisar, A., & Masum, M. (2019). Comparison of Naive Bayes and SVM Algorithm based on Sentiment Analysis Using Review Dataset. In 8th International Conference on System Modeling & Advancement in Research Trends (pp. 266–270). IEEE Xplore. https://doi.org/10.1109/SMART46866.2019.9117512

Rahmalia, D. (2021). Optimizing the Membership Degree of Fuzzy Inference System ( FIS ) and Fuzzy Clustering Means ( FCM ) in Weather Data Using Firefly Algorithm. Jurnal Matematika Murni Dan Aplikasi, 6(4), 169–180. https://doi.org/10.18860/ca.v6i4.8933

Riki, S. et al. (2020). Pengendalian Persediaan Dengan Metode Forcasting : Moving Average dan Exponential Smoothing. Algor, 2(1), 22.

Saifullah, S., Suryotomo, A. P., Dreżewski, R., Tanone, R., & Tundo. (2023). Optimizing Brain Tumor Segmentation Through CNN U-Net with CLAHE-HE Image Enhancement. 1st International Conference on Advanced Informatics and Intelligent Information Systems (ICAI3S 2023). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-366-5

Selvachandran, G., Quek, S. G., Thi, L., Lan, H., Son, L. H., Giang, N. L., & Ding, W. (2019). A New Design of Mamdani Complex Fuzzy Inference System for Multi-attribute Decision Making Problems. IEEE Transactions on Fuzzy Systems, PP(c), 1. https://doi.org/10.1109/TFUZZ.2019.2961350

Singh, G. (2019). Comparison between Multinomial and Bernoulli Naïve Bayes for Text Classification. 2019 International Conference on Automation, Computational and Technology Management (ICACTM), 593–596. https://doi.org/10.1109/ICACTM.2019.8776800

Sutopo, J., Khanapi, M., Ghani, A., Burhanuddin, M. A., Septianti, A. N., & Tundo, T. (2023). Dance Gesture Recognition Using Laban Movement Analysis with J48 Classification. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 11(2), 528–536. https://doi.org/10.52549/ijeei.v11i2.4314

Syahdan, S., Arif, A., & Megawati, M. (2022). Analysis of the Factors that Cause Dengue Hemorrhagic Fever (DHF) Using Chi-Square Automatic Interaction Detection (CHAID). International Journal of Natural Science and Engineering, 5(3), 104–113. https://doi.org/10.23887/ijnse.v5i3.41123

Tobing, D. N. L. (2022). Indihome Product Sales Forecasting with the Double Moving Average and Double Exponential Smoothing Methods on PT. Telkom Witel Sumut Pematang Siantar. Formosa Journal of Science and Technology, 1(8), 1201–1222. https://doi.org/10.55927/fjst.v1i8.2281

Tripathi, A., Yadav, S., & Rajan, R. (2019). Naive Bayes Classification Model for the Student Performance Prediction. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies, ICICICT 2019, 1548–1553. https://doi.org/10.1109/ICICICT46008.2019.8993237

Tundo, T. (2022). Subjectivity Tracking System for Poor Scholarship Recipients at Elementary School Using the MOORA Method. JTAM (Jurnal Teori Dan Aplikasi Matematika), 6(3), 498–510. https://doi.org/10.31764/jtam.v6i3.8373

Tundo, T., & Mahardika, F. (2023). Fuzzy Inference System Tsukamoto – Decision Tree C 4 . 5 in Predicting the Amount of Roof Tile Production in Kebumen. JTAM (Jurnal Teori Dan Aplikasi Matematika), 7(2), 533–544. https://doi.org/10.31764/jtam.v7i2.13034

Tundo, T., & Sela, E. I. (2018). Application of The Fuzzy Inference System Method to Predict The Number of Weaving Fabric Production. IJID (International Journal on Informatics for Development), 7(1), 19. https://doi.org/10.14421/ijid.2018.07105

Tundo, & Uyun, S. (2020). Penerapan Decision Tree J48 Dan Reptree Dalam Menentukan Prediksi Produksi Minyak Kelapa Sawit Menggunakan Metode Fuzzy Tsukamoto. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 7(3), 483–492. https://doi.org/10.25126/jtiik.202071870

Wang, W. H., Urbina, A. N., Chang, M. R., Assavalapsakul, W., Lu, P. L., Chen, Y. H., & Wang, S. F. (2020). Dengue hemorrhagic fever – A systemic literature review of current perspectives on pathogenesis, prevention and control. Journal of Microbiology, Immunology and Infection, 53(6), 963–978. https://doi.org/10.1016/j.jmii.2020.03.007

Weerathunga, P. R., Xiaofang, C., & Sameera, T. K. G. (2020). Heterogeneity in Earning Management of Listed Companies Following International Financial Reporting Standards Convergence: a Developing Country Experiences. International Journal of Economics and Financial Issues, 10(1), 101–108. https://doi.org/10.32479/ijefi.8872




DOI: https://doi.org/10.31764/jtam.v8i3.22225

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mesra Betty Yel, Tundo, Veri Arinal

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: