Characteristic Polynomial and Eigenproblem of Triangular Matrix over Interval Min-Plus Algebra

Anita Dwi Rahmawati, Siswanto Siswanto, Supriyadi Wibowo

Abstract


A min-plus algebra is a linear algebra over the semiring R_ε', equipped with the operations “"⊕'=min" ” and “⊗=+”. In min-plus algebra, there is the concept of characteristic polynomial obtained from permanent of matrix. Min-plus algebra can be extended to an interval min-plus algebra, which is a set 〖 I(R)〗_ε' equipped with the operations ¯("⊕'" ) and ¯("⊗" ). Matrix over interval min-plus algebra has some special forms, one of which is a triangular matrix. The concept of characteristic polynomial and eigenproblem can be applied to a triangular matrix. There is a more concise formula for solving the eigenproblem of triangular matrix because this matrix is a special form of matrix. This research will discuss the characteristic polynomial and solving eigenproblem of triangular matrix over interval min-plus algebra using its characteristic polynomials. The research method used is a literature study. From the research results, the permanent formula and characteristic polynomial formula of the triangular matrix are obtained. It is also obtained that the smallest corner of the characteristic polynomial is the principal eigenvalue and the vector eigen corresponding to the principal eigenvalue can be obtained through the matrix A_λ. For readers who are interested in this topic, can research about characteristic polynomial and eigenproblem of matrices with other special forms over min-plus interval algebra.


Keywords


Triangular matrix; Smallest corner; Principal eigenvalue; Eigenvector; Characteristic polynomial.

Full Text:

DOWNLOAD [PDF]

References


Al Bermanei, H., Böling, J. M., & Högnäs, G. (2023). Modeling and scheduling of production systems by using max-plus algebra. Flexible Services and Manufacturing Journal, 36, 129-150. https://doi.org/10.1007/s10696-023-09484-z

Awallia, A. R. (2020). Struktur Aljabar Min-Plus Interval dan Masalah Nilai Eigen Matriks atas Aljabar Min-Plus Interval [Skripsi]. Universitas Sebelas Maret.

Awallia, A. R., Siswanto, & Kurniawan, V. Y. (2020). Interval min-plus algebraic structure and matrices over interval min-plus algebra. Journal of Physics: Conference Series, 1494(1), 1–7. https://doi.org/10.1088/1742-6596/1494/1/012010

De Schutter, B., van den Boom, T., Xu, J., & Farahani, S. S. (2020). Analysis and control of max-plus linear discrete-event systems: An introduction. Discrete Event Dynamic Systems: Theory and Applications, 30(1), 25–54. https://doi.org/10.1007/s10626-019-00294-w

Farhi, N. (2023). A Min-Plus Algebra System Theory for Traffic Networks. Mathematics, 11(19), 1–23. https://doi.org/10.3390/math11194028

Gyamerah, S., Boateng, P., & Harvim, P. (2016). Max-plus Algebra and Application to Matrix Operations. British Journal of Mathematics & Computer Science, 12(3), 1–14. https://doi.org/10.9734/bjmcs/2016/21639

Haneefa, G. P. T., & Siswanto. (2021). Petri Net Model and Max-Plus Algebra in Outpatient Care at Solo Peduli Clinic, Surakarta. Journal of Physics: Conference Series, 1776(1), 1–7. https://doi.org/10.1088/1742-6596/1776/1/012047

Hook, J. (2015). Max-plus singular values. Linear Algebra and Its Applications, 486, 419–442. https://doi.org/10.1016/j.laa.2015.08.019

Jiang, Y. (2022). Study on eigenvalue and eigenvector introduction. Journal of Physics: Conference Series, 2282(1), 1–8. https://doi.org/10.1088/1742-6596/2282/1/012004

Maghribi, S. M. Al. (2023). Polinomial Karakteristik dan Masalah Eigen Matriks atas Aljabar Min-Plus [Skripsi]. Universitas Sebelas Maret.

Maghribi, S. M. Al, Siswanto, & Sutrima. (2023). Characteristic Min-Polynomial and Eigen Problem of a Matrix over Min-Plus Algebra. 7(4), 1108–1117. https://doi.org/10.31764/jtam.v7i4.16498

Maharani, A. E. S. H., & Suparwanto, A. (2022). Application of System Max-Plus Linear Equations on Serial Manufacturing Machine with Storage Unit. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(2), 525–530. https://doi.org/10.30598/barekengvol16iss2pp525-530

Nishida, Y., Watanabe, S., & Watanabe, Y. (2020). On The Vectors Associated with the Roots of Max-Plus Characteristic Polynomials. Applications of Mathematics, 65(6), 785–805. https://doi.org/10.21136/AM.2020.0374-19

Nowak, A. W. (2014). The Tropical Eigenvalue-Vector Problem from Algebraic, Graphical, and Computational Perspectives [Honors Theses, Bates College]. http://scarab.bates.edu/honorstheses/97

Nurwan, N., & F. Payu, M. R. (2022). Max-Plus Algebra Model on Inaportnet System Ships Service Scheme. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(1), 147–156. https://doi.org/10.30598/barekengvol16iss1pp147-156

Permana, A., Siswanto, & Pangadi. (2020). Eigen Problem Over Max-Plus Algebra on Determination of the T3 Brand Shuttlecock Production Schedule. Numerical: Jurnal Matematika Dan Pendidikan Matematika, 23–30. https://doi.org/10.25217/numerical.v4i1.702

Prastiwi, L., & Listiana, Y. (2017). The Aplication of Max-Plus Algebra to Determine The Optimal Time of Ikat Kupang Woven Production. International Journal of Computing Science and Applied Mathematics, 3(2), 77–80. http://dx.doi.org/10.12962/j24775401.v3i2.2317

Rahayu, E. W., Siswanto, S., & Wiyono, S. B. (2021). Masalah Eigen dan Eigenmode Matriks atas Aljabar Min-Plus. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(4), 659–666. https://doi.org/10.30598/barekengvol15iss4pp659-666

Rosenmann, A., Lehner, F., & Peperko, A. (2019). Polynomial convolutions in max-plus algebra. Linear Algebra and Its Applications, 578, 370–401. https://doi.org/10.1016/j.laa.2019.05.020

Siswanto. (2023). The Existence of Solution of Generalized Eigenproblem in Interval Max-Plus Algebra. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(3), 1341–1346. https://doi.org/10.30598/barekengvol17iss3pp1341-1346

Siswanto, Gusmizain, A., & Wibowo, S. (2021). Determinant of a matrix over min-plus algebra. Journal of Discrete Mathematical Sciences and Cryptography, 24(6), 1829–1835. https://doi.org/10.1080/09720529.2021.1948663

Siswanto, Kurniawan, V. Y., Pangadi, & Wiyono, S. B. (2021). Characteristic Polynomial of Matrices over Interval Max-plus Algebra. AIP Conference Proceedings, 2326, 1–5. https://doi.org/10.1063/5.0039779

Siswanto, Pangadi, & Wiyono, S. B. (2019). Robust matrices in the interval max-plus algebra. Journal of Physics: Conference Series, 1265(1), 1–7. https://doi.org/10.1088/1742-6596/1265/1/012029

Subiono, Fahim, K., & Adzkiya, D. (2018). Generalized Public Transportation Scheduling Using Max-plus Algebra. Kybernetika, 54(2), 243–267. https://doi.org/10.14736/kyb-2018-2-0243

Susilowati, E., & Fitriani, F. (2019). Determining The Shortest Path Between Terminal and Airport in Yogyakarta Using Trans Jogja with Min Plus Algorithm. MUST: Journal of Mathematics Education, 4(2), 123–134. https://doi.org/10.30651/must.v4i2.2966

Watanabe, S., & Watanabe, Y. (2014). Min-Plus Algebra and Networks. RIMS Kôkyûroku Bessatsu, 47, 41–54. https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/226217/1/B47_004.pdf

Wulandari, A. V., & Siswanto. (2019). Characteristic Polynomial of a Triangular and Diagonal Strictly Double ℝ-astic Matrices over Interval Max-Plus Algebra. Journal of Physics: Conference Series, 1306(1), 1–7. https://doi.org/10.1088/1742-6596/1306/1/012005




DOI: https://doi.org/10.31764/jtam.v8i3.22305

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Anita Dwi Rahmawati, Siswanto, Supriyadi Wibowo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: