Improving the Accuracy of Discrepancies in Farmers' Purchasing and Selling Index Prediction by Incorporating Weather Factors
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Akpinar, M., & Yumusak, N. (2016). Year ahead demand forecast of city natural gas using seasonal time series methods. Energies, 9(9), 1–17. https://doi.org/10.3390/en9090727
Amini, M. H., Kargarian, A., & Karabasoglu, O. (2016). ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electric Power Systems Research, 140(6), 378–390. https://doi.org/10.1016/j.epsr.2016.06.003
Ananthu, D. P., & Neelashetty, K. (2021). Electrical Load Forecasting using ARIMA, Prophet and LSTM Networks. International Journal of Electrical and Electronics Research, 9(4), 114–119. https://doi.org/10.37391/IJEER.090404
Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief, 29(2), 105340. https://doi.org/10.1016/j.dib.2020.105340
Bousnguar, H., Najdi, L., & Battou, A. (2022). Forecasting approaches in a higher education setting. Education and Information Technologies, 27(2), 1993–2011. https://doi.org/10.1007/s10639-021-10684-z
Bustos, P., Caprettini, B., & Ponticelli, J. (2016). Agricultural productivity and structural transformation: Evidence from Brazil. American Economic Review, 106(6), 1320–1365. https://doi.org/10.1257/aer.20131061
Capan, M., Hoover, S., Jackson, E. V., Paul, D., & Locke, R. (2016). Time series analysis for forecasting hospital census: Application to the neonatal intensive care unit. Applied Clinical Informatics, 7(2), 275–289. https://doi.org/10.4338/ACI-2015-09-RA-0127
Cardoso, C. V., & Cruz, G. L. (2016). Forecasting Natural Gas Consumption using ARIMA Models and Artificial Neural Networks. IEEE Latin America Transactions, 14(5), 2233–2238. https://doi.org/10.1109/TLA.2016.7530418
Chang, D. F., & Chen, B. Y. (2023). Exploring the Adequacy of Human Resource Investment for Quality Lower Secondary Education. ICIC Express Letters, Part B: Applications, 14(2), 141–150. https://doi.org/10.24507/icicelb.14.02.141
Chodakowska, E., Nazarko, J., & Nazarko, Ł. (2021). Arima models in electrical load forecasting and their robustness to noise. Energies, 14(23), 7952. https://doi.org/10.3390/en14237952
Cruz, A. P. Dela, Basallo, M. L. B., Bere, B. A., Aguilar, J. B., Kenny, C., Calvo, P., Arroyo, J. C. T., & Delima, A. J. P. (2020). Higher Education Institution (HEI) Enrollment Forecasting Using Data Mining Technique. International Journal of Advanced Trends in Computer Science and Engineering, 9(2), 2060–2064. https://doi.org/10.30534/ijatcse/2020/179922020
de Araújo Morais, L. R., & da Silva Gomes, G. S. (2022). Forecasting daily Covid-19 cases in the world with a hybrid ARIMA and neural network model. Applied Soft Computing, 126(6), 109315. https://doi.org/10.1016/j.asoc.2022.109315
Duan, Y., Wang, H., Wei, M., Tan, L., & Yue, T. (2022). Application of ARIMA-RTS optimal smoothing algorithm in gas well production prediction. Petroleum, 8(2), 270–277. https://doi.org/10.1016/j.petlm.2021.09.001
Hong, K., Wang, X., & Xu, L. (2022). Research on price forecasting and trading strategy based on data insight. BCP Business & Management, 22(1), 232–238. https://doi.org/10.54691/bcpbm.v22i.1234
Jadhav, V., Chinnappa Reddy, B. V., & Gaddi, G. M. (2017). Application of ARIMA model for forecasting agricultural prices. Journal of Agricultural Science and Technology, 19(5), 981–992. https://jast.modares.ac.ir/article-23-2638-en.pdf
Javed, U., Ijaz, K., Jawad, M., Ansari, E. A., Shabbir, N., Kütt, L., & Husev, O. (2021). Exploratory data analysis based short‐term electrical load forecasting: A comprehensive analysis. Energies, 14(17), 1–22. https://doi.org/10.3390/en14175510
Juang, W. C., Huang, S. J., Huang, F. D., Cheng, P. W., & Wann, S. R. (2017). Application of time series analysis in modelling and forecasting emergency department visits in a medical centre in Southern Taiwan. BMJ Open, 7(11), 1–7. https://doi.org/10.1136/bmjopen-2017-018628
Kufel, T. (2020). ARIMA-based forecasting of the dynamics of confirmed covid-19 cases for selected european countries. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(2), 181–204. https://doi.org/10.24136/eq.2020.009
Liu, T., Lau, A. K. H., Sandbrink, K., & Fung, J. C. H. (2018). Time Series Forecasting of Air Quality Based On Regional Numerical Modeling in Hong Kong. Journal of Geophysical Research: Atmospheres, 123(8), 4175–4196. https://doi.org/10.1002/2017JD028052
Lopez, J. C., Rider, M. J., & Wu, Q. (2019). Parsimonious Short-Term Load Forecasting for Optimal Operation Planning of Electrical Distribution Systems. IEEE Transactions on Power Systems, 34(2), 1427–1437. https://doi.org/10.1109/TPWRS.2018.2872388
Luo, L., Luo, L., Zhang, X., & He, X. (2017). Hospital daily outpatient visits forecasting using a combinatorial model based on ARIMA and SES models. BMC Health Services Research, 17(1), 1–13. https://doi.org/10.1186/s12913-017-2407-9
Manowska, A., Rybak, A., Dylong, A., & Pielot, J. (2021). Forecasting of natural gas consumption in poland based on ARIMA‐LSTM hybrid model. Energies, 14(24), 1–14. https://doi.org/10.3390/en14248597
Ospina, R., Gondim, J. A. M., Leiva, V., & Castro, C. (2023). An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil. Mathematics, 11(14), 1–18. https://doi.org/10.3390/math11143069
Qin, L., Shanks, K., Phillips, G. A., & Bernard, D. (2019). The Impact of Lengths of Time Series on the Accuracy of the ARIMA Forecasting. International Research in Higher Education, 4(3), 58. https://doi.org/10.5430/irhe.v4n3p58
Rosadi, D. (2012). Pemanfaatan Software Open Source R dalam pemodelan ARIMA. Seminar Nasional Dan Pendidikan Matematika 2009, 786–795. ISBN 978-979-16353-3-2
Rostan, P., Rostan, A., & Nurunnabi, M. (2020). Options trading strategy based on ARIMA forecasting. PSU Research Review, 4(2), 111–127. https://doi.org/10.1108/PRR-07-2019-0023
Roy, S., Bhunia, G. S., & Shit, P. K. (2021). Spatial prediction of COVID-19 epidemic using ARIMA techniques in India. Modeling Earth Systems and Environment, 7(2), 1385–1391. https://doi.org/10.1007/s40808-020-00890-y
Sahai, A. K., Rath, N., Sood, V., & Singh, M. P. (2020). ARIMA modelling & forecasting of COVID-19 in top five affected countries. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(5), 1419–1427. https://doi.org/10.1016/j.dsx.2020.07.042
Xia, F., & Chang, D. F. (2021). Forecasting student mobility flows in higher education: A case study in china. ICIC Express Letters, Part B: Applications, 12(6), 525–532. https://doi.org/10.24507/icicelb.12.06.525
Xu, T., Wang, Z., Han, Z., Zhang, M., Liu, J., & Chang, S. (2022). A Quantitative Trading Strategy Based on A Position Management Model. Academic Journal of Science and Technology, 2(1), 82–93. https://doi.org/10.54097/ajst.v2i1.901
Yucesan, M., Gul, M., & Celik, E. (2020). A multi-method patient arrival forecasting outline for hospital emergency departments. International Journal of Healthcare Management, 13(S1), 283–295. https://doi.org/10.1080/20479700.2018.1531608
Yulianti, S. R., Effendie, A. R., & Susyanto, N. (2023). Revitalisasi Asuransi Pertanian: Mewujudkan Keberlanjutan dan Ketahanan Petani di Wilayah Jawa Tengah melalui Sistem Asuransi Berbasis Indeks Jual dan Beli. Prosiding Bank Indonesia 2023, 2(1), 82–95. ISSN 2964-9951
Zhang, R., Guo, Z., Meng, Y., Wang, S., Li, S., Niu, R., Wang, Y., Guo, Q., & Li, Y. (2021). Comparison of arima and lstm in forecasting the incidence of hfmd combined and uncombined with exogenous meteorological variables in Ningbo, China. International Journal of Environmental Research and Public Health, 18(11), 1–14. https://doi.org/10.3390/ijerph18116174
DOI: https://doi.org/10.31764/jtam.v8i3.22584
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Silvina Rosita Yulianti, Adhitya Ronnie Effendie, Nanang Susyanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: