Application of the Fractal Geometry in Development Surya Majapahit Batik Motif

Juhari Juhari, Alfrista Anggraini Pratiwi

Abstract


The Mandelbrot and Julia sets are generated through iterative mathematical functions applied to points in the complex plane. These operations enable the detailed and intricate patterns characteristic of these fractals, allowing for modifications and zooming to explore different regions of the sets. TThe Mojokerto Surya Majapahit batik motif is a motif that has eight corners. One way to develop a Mojokerto batik motif that is similar to Surya Majapahit is by applying the science of fractal geometry. Fractal geometry studies a fractal pattern that can change shape according to input parameters and the number of iterations carried out. This research was conducted to determine the application of Mandelbrot and Julia’s fractal geometry using geometric transformations to obtain batik motif variants that is similar to Surya Majapahit. There are three steps in forming this motif variant. First, generating Mandelbrot fractals and Julia fractals. Second, the patterns generated by Mandelbrot and Julia are applied using geometric transformations. The geometric transformations that will be used are rotation, dilation, and translation. Finally, these patterns will be modified by combining patterns implementing logic operations using Python computer applications. The results of this research obtained four variants of batik motif that is similar to Surya Majapahit. The difference in each variant lies in the order of transformation. Variant 1 and variant 3 can be carried out by changing the sequence of geometric transformations, namely rotation, translation and dilationVariant 1 is obtained by applying rotation, dilation, and translation to the Mandelbrot and Julia pattern. Variant 2 is obtained with the Mandelbrot pattern applying rotation, dilation with two different scales, and translation, while the Julia pattern only applied rotation and translation. Variant 3 is obtained by applying rotation, dilation and translation to the Mandelbrot and Julia pattern. Variant 4 is obtained with the Mandelbrot pattern applied by rotation, dilation with three different scales, and translation, while the Julia pattern was applied only by rotation and translation. Meanwhile variants 2 and 4 apply different rotations, dilation scales, namely 0.451 and 0.318, and translation to the Mandelbrot pattern.

Keywords


Fractal; Mandelbrot Set; Julia Set.

Full Text:

DOWNLOAD [PDF]

References


Budiman, F. (2016). Wavelet Decomposition Levels Analysis for Indonesia Traditional Batik Classification. Journal of Theoretical and Applied Information Technology, 92(2), 389–394. Retrieved from https://www.jatit.org/volumes/ninetytwo2.php

Devaney, R. L. (2018). A First Course in Chaotic Dynamical Systems. https://doi.org/10.1201/9780429503481

Djulius, H. (2017). How to Transform Creative Ideas Into Creative Products: Learning From the Success of Batik Fractal. International Journal of Business and Globalisation, 19(2), 183. https://doi.org/10.1504/IJBG.2017.085925

Febrianti, M. (2019). Fractal Batik Inspires Young Designers in the International Scene (Research on Pixel Team of Bandung Free Institute). Journal of Advanced Research in Dynamical and Control Systems - JARDCS, 11(6), 1067–1074. Retrieved from https://www.jardcs.org/abstract.php?id=1406

Febrianti, T. S., & Afifi, F. C. (2022). Batik Jlamprang with Koch Snowflake and Koch Anti Snowflake Fractal Geometry using Desmos. Ethnomathematics Journal, 3(1). https://doi.org/10.21831/ej.v3i1.48775

Isnanto, R. R., Hidayatno, A., & Zahra, A. A. (2020). Fractal Batik Motifs Generation Using Variations of Parameters in Julia Set Function. 2020 8th International Conference on Information and Communication Technology (ICoICT), 1–6. https://doi.org/10.1109/ICoICT49345.2020.9166282

Juhari, J. (2019). The Study Geometry Fractals Designed on Batik Motives. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 6(1), 34–39. https://doi.org/10.18860/ca.v6i1.8081

Lifindra, B. H., Herumurti, D., & Kuswardayan, I. (2023). Batik Style Transfer into Fractal Shape. 2023 14th International Conference on Information & Communication Technology and System (ICTS), 94–99. https://doi.org/10.1109/ICTS58770.2023.10330857

Ngilawajan, D. A. (2015). Konsep Geometri Fraktal Dalam Kain Tenun Tanimbar. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 9(1), 33–39. https://doi.org/10.30598/barekengvol9iss1pp33-39

Perindustrian, K. (2020). Serap 200 Ribu Tenaga Kerja, Ekspor Industri Batik Tembus USD-533-Juta. Retrieved from https://www.kemenperin.go.id/artikel/22830/Serap-200-Ribu-Tenaga-Kerja,-Ekspor-Industri-Batik-Tembus-USD-533-Juta

Sholeha; Purnomo; Riski, A. (2020). Pengembangan Batik Fraktal Berbasis Koch Snowflake (m,n,c) dan Koch Anti-Snowflake (m,n,c) Menggunakan L-System. PRISMA: Prosiding Seminar Nasional Matematika 3, 147–155. Retrieved from https://journal.unnes.ac.id/sju/prisma/article/view/37834

Solar, F. Y., Titaley, J., & Rindengan, A. J. (2021). Penerapan Geometri Fraktal Dalam Membuat Variasi Motif Batik Nusantara Berbasis Julia Set. D’CARTESIAN, 9(2), 189. https://doi.org/10.35799/dc.9.2.2020.29968

Sunaryo; Fanani, A. (2020). Penggabungan Geometri Fraktal dengan Batik Sendang. Jurnal Mahasiswa Matematika Algebra, 1(2), 15. https://doi.org/https://doi.org/10.29080/algebra.v1i2.15

Wulandari, E. Y., Purnomo, K. D., & Kamsyakawuni, A. (2017). Development Design Labako Batik with Combine Fractal Geometry Dragon Curve and Tobacco Leaf Motif. Jurnal ILMU DASAR, 18(2), 125. https://doi.org/10.19184/jid.v18i2.5650




DOI: https://doi.org/10.31764/jtam.v8i3.22811

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Juhari, Alfrista Anggraini Pratiwi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: