Mathematical Model of COVID-19 Spread with Vaccination in Mataram City

Muhammad Putra Sani Hattamurrahman, Paian Sianturi, Hadi Sumarno

Abstract


The COVID-19 pandemic has had a significant impact on public health worldwide.. Mathematical modeling is considered an alternative tool for understanding real-life problems, including the dynamics of COVID-19 spread. This is an applied research that purpose adds vaccination to Zeb et al. (2020) SEIQR model of COVID-19 spread and examines the dynamic of COVID-19 spread in Mataram City. First, we construct the new model by making assumptions. The fixed point and basic reproduction number (R_0 ) are then used to analyze the model using the next-generation matrix method. The next-generation matrix method is utilized to estimate the R_0 in a compartmental disease model. Two fixed points are acquired, specifically the disease-free fixed point, which is locally asymptotically stable under the condition R_0<1 determined by the Routh Hurwitz criterion via linearization using the Jacobi matrix. And the disease-endemic fixed point, which is locally asymptotically stable under the condition R_0>1 indicated by Lyapunov function. The population dynamics when R_0<1 and R_0>1 can also be observed through numerical simulation. The results of a numerical simulation indicate that giving the proportion of number vaccinated 62 per cent is effective in suppressing the number of infections.

 



Keywords


COVID-19; Vaccination; Mathematical model; Basic reproduction number; Routh Hurwitz criterion; Lyapunov function; Mathematical model.

Full Text:

DOWNLOAD [PDF]

References


Abidemi, A., Akanni, J. O., & Makinde, O. D. (2023). Healthcare Analytics A non-linear mathematical model for analysing the impact of COVID-19 disease on higher education in developing countries. Healthcare Analytics, 3(May), 100193. https://doi.org/10.1016/j.health.2023.100193

Ahmed, I., Modu, G. U., Yusuf, A., Kumam, P., & Yusuf, I. (2020). A Mathematical Model of Coronavirus Disease (COVID-19) Containing asymptomatic symptomatic classes. Results in Physics, 21(Feb), 103776. https://doi.org/10.1016/j.rinp.2020.103776

Bjørnstad, O. N., Shea, K., Krzywinski, M., & Altman, N. (2020). The SEIRS model for infectious disease dynamics. Nature Methods, 17(6),557–558. https://doi.org/10.1038/s41592-020-0856-2

Cao, J., Tu, W., Cheng, W., Yu, L., Liu, Y., Hu, X., & Liu, Q. (2020). Clinical Features and Short-term Outcomes of 102 Patients with Coronavirus Disease 2019 in Wuhan , China. 71(15), 748-755. https://doi.org/10.1093/cid/ciaa243

Cheruku, V., Babu, B. S., Santhos, K., & Chlestina, G. (2023). Study of SEIQR mathematical model-prediction of spread of Covid-19. AIP Conference Proceedings, 2852(1), 110002. https://doi.org/10.1063/5.0164809

DarAssi, M. H., Ahmad, I., Meetei, M. Z., Alsulami, M., Khan, M. A., & Tag-eldin, E. M. (2023). The impact of the face mask on SARS-CoV-2 disease: Mathematical modeling with a case study. Results in Physics, 51(May), 106699. https://doi.org/10.1016/j.rinp.2023.106699

Diagne, M. L., Rwezaura, H., Tchoumi, S. Y., & Tchuenche, J. M. (2021). A Mathematical Model of COVID-19 with Vaccination and Treatment. Computational and Mathematical Methods in Medicine, 2021(9), 1250129. https://doi.org/10.1155/2021/1250129

Hardianti, W. T., Sumarno, H., & Sianturi, P. (2022). Sensitivity Analysis of SEIRS Model with Quarantine on the Spread of Covid-19. JTAM (Jurnal Teori Dan Aplikasi Matematika), 6(4), 1034. https://doi.org/10.31764/jtam.v6i4.9627

Hassan, M. N., Mahmud, M. S., Nipa, K. F., & Kamrujjaman, M. (2023). Mathematical Modeling and COVID-19 Forecast in Texas, USA: A Prediction Model Analysis and the Probability of Disease Outbreak. Disaster Medicine and Public Health Preparedness, 17(1), 21. https://doi.org/10.1017/dmp.2021.151

Khan, I. U., Hussain, A., Li, S., & Shokri, A. (2023). Modeling the Transmission Dynamics of Coronavirus Using Nonstandard Finite Difference Scheme. Fractal and Fractional, 7(6), 1–16. https://doi.org/10.3390/fractalfract7060451

Margenov, S., Popivanov, N., Ugrinova, I., & Hristov, T. (2022). Mathematical Modeling and Short-Term Forecasting of the COVID-19 Epidemic in Bulgaria: SEIRS Model with Vaccination. Mathematics, 10(15), 2570. https://doi.org/10.3390/math10152570

Ming, W.-K., Huang, J., & Zhang, C. J. P. (2020). Breaking down of healthcare system: Mathematical modelling for controlling the novel coronavirus (2019-nCoV) outbreak in Wuhan, China. BioRxiv, January. 2020(1), 27. https://doi.org/10.1101/2020.01.27.922443

Naresh, R., Sundar, S., Verma, S. R., & Shukla, J. B. (2023). A mathematical model to study the spread of COVID-19 and its control in India. Computational and Mathematical Biophysics, 11(1), 149. https://doi.org/10.1515/cmb-2022-0149

Nesteruk, I. (2020). Statistics-Based Predictions of Coronavirus Epidemic Spreading in Mainland China. Innovative Biosystems and Bioengineering, 4(1), 13–18. https://doi.org/10.20535/ibb.2020.4.1.195074

Peter, O. J., Panigoro, H. S., Abidemi, A., Ojo, M. M., & Oguntolu, F. A. (2023). Mathematical Model of COVID-19 Pandemic with Double Dose Vaccination. Acta Biotheoretica, 71(2), 19–20. https://doi.org/10.1007/s10441-023-09460-y

Pinto Neto, O., Kennedy, D. M., Reis, J. C., Wang, Y., Brizzi, A. C. B., Zambrano, G. J., de Souza, J. M., Pedroso, W., de Mello Pedreiro, R. C., de Matos Brizzi, B., Abinader, E. O., & Zângaro, R. A. (2021). Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-020-20687-y

Polwiang, S. (2023). The lockdown and vaccination distribution in Thailand’s COVID-19 epidemic: A model study. Infectious Disease Modelling, 8(2), 551–561. https://doi.org/10.1016/j.idm.2023.05.002

Rahimi, I., Gandomi, A. H., Asteris, P. G., & Chen, F. (2021). Analysis and prediction of covid-19 using sir, seiqr and machine learning models: Australia, italy and uk cases. Information (Switzerland), 12(3), 1–25. https://doi.org/10.3390/info12030109

Rahmasari, S. M., Widowati, & Herdiana, R. (2023). Mathematical Modelling and Stability Analysis of the SEQIRD Model Spread of COVID-19. AIP Publishing, 2738(1),140163. https://doi.org/10.1063/5.0140163

Resmawan, R., Yahya, L., Pakaya, R. S., Panigoro, H. S., & Nuha, A. R. (2022). Analisis Dinamik Model Penyebaran COVID-19 dengan Vaksinasi. Jambura Journal of Biomathematics (JJBM), 3(1), 29–38. https://doi.org/10.34312/jjbm.v3i1.13176

Salle, J. La, & Lefschetz, S. (1961). Stability by Liapunov’s Direct Method: With Applications (4th ed.). Academic Press. https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19620421022

Septiansyah, G., Karim, M. A., & Yulida, Y. (2022). Pemodelan Matematika Penyebaran Covid-19 Dengan Model Sveir. 16(2), 101–116. https://10.20527/epsilon.v16i2.6496

Singh, A., Sapna, B., & Nivedita, D. (2022). Modelling and analysis of a SEIQR model on COVID ‑ 19 pandemic with delay. Modeling Earth Systems and Environment, 8(3), 3201–3214. https://doi.org/10.1007/s40808-021-01279-1

Van Den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1–2), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6

Verma, V., Agarwal, M., & Verma, A. (2023). A mathematical model for the novel coronavirus with effect of lockdown. International Journal of Modeling, Simulation, and Scientific Computing, 14(3),23500058. https://doi.org/10.1142/S1793962323500058

Wang, F., Cao, L., & Song, X. (2022). Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination. Mathematical Biosciences and Engineering, 19(8), 8035–8056. https://doi.org/10.3934/mbe.2022376

WHO. (2023). Number of COVID-19 cases reported to WHO. https://data.who.int/dashboards/covid19

Zeb, A., Alzahrani, E., Erturk, V. S., & Zaman, G. (2020). Mathematical Model for Coronavirus Disease 2019 (COVID-19) Containing Isolation Class. BioMed Research International, 2020. 34(5), 2402. https://doi.org/10.1155/2020/3452402

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/nejmoa2001017




DOI: https://doi.org/10.31764/jtam.v8i4.23113

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Muhammad Putra Sani Hattamurrahman, Paian Sianturi, Hadi Sumarno

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: