On Properties of the (2n+1)-Dimensional Heisenberg Lie Algebra
Abstract
Keywords
Full Text:
Download [PDF]References
Alvarez, M. A., & et al. (2018). Contact and Frobenius solvable Lie algebras with abelian nilradical. Comm. Algebra, 46, 4344–4354.
Ayala, V., Kizil, E., & Tribuzy, I. D. A. (2012). On an algorithm for finding derivations of lie algebras. Proyecciones Journal of Mathematics, 31(1), 81–90. https://doi.org/10.4067/S0716-09172012000100008
Bagarello, F., & Russo, F. G. (2018). A description of pseudo-bosons in the terms of nilpotent Lie algebras. Journal of Geometry and Physics, 125, 1--11.
Balachandirin,Muraleetharan, & et al. (2017). A representation of Weyl_Heisenber Lie algebra in the quaternionic setting. Annal.of Physics, 385, 180--213.
Baraquin, I. (2017). Stocastics aspects of the unitary dual group,. Comptes Rendus Mathematique, 357, 180--185.
Bekkert,Victor, & et al. (2013). New irreducible modules for Heisenberg and affine Lie algebras. Journal of Algebra, 373, 284--298.
Cantuba, R. R. S. (2019). Lie polynomials in q-deformed Heisenberg algebras. Journal of Algebra, 522, 101--123.
Cantuba, R. R. S., & Merciales, Mark Anthony C. (2020). An extension of a q-deformed Heisenberg algebra and its Lie polynomials. Expositiones Mathematics.
Cebron,G, & Ulrich,M. (2016). Haar states and Levi processes on the unitary dual group,. Journal of Functional Analysis, 270, 2769--2811.
Corwin, L. ., & Greenleaf, F. . (1990). Representations of nilpotent Lie groups and their application. Part I. Basic theory and examples,. Cambridge: Cambridge University Press, Cambridge.
Diatta, A., & Manga, B. (2014). On properties of principal elements of frobenius lie algebras. J. Lie Theory, 24(3), 849–864.
Hilgert, J., & Neeb, K.-H. (2012). Structure and Geometry of Lie Groups. New York: Springer Monographs in Mathematics, Springer.
Kirillov, A. A. (2004). Lectures on the Orbit Method, Graduate Studies in Mathematics. American Mathematical Society,Providence, 64.
Kurniadi, E. (2020a). Construction of Real Frobenius Lie Algebras from Non Abelian Nilpotent Lie Algebras of Dimension ≤4. Submitted to Journal Ilmu Dasar UNEJ.
Kurniadi, E. (2020b). On Square-Integrable Representations of A Lie Group of 4-Dimensional Standard Filiform Lie Algebra. Cauchy:Jurnal Matematika Murni Dan Aplikasi.
Liu, D., & et al. (2012). Lie bialgebras structures on the twisted Heisenberg-Virasoro algebra. Journal of Algebra, 359, 35--48.
Lu,Rencai, & Zhao,Kaiming. (2015). Finite-dimensional simple modules over generalized Heisenberg algebras. Linear Algebra and Its Applications, 475, 276--291.
Nirooman,Peyman, & Parvizi, M. (2017). 2-capability and 2-nilpotent multiplier of finite dimensional nilpotent Lie algebras. Journal of Geometry and Physics, 121, 180--185.
Niroomand, P., & Johari, F. (2018). The structure, capability, and the Schur multiplier of the generelized Heisenberg Lie algebra. Journal of Algebra, 505, 482--489.
Ooms, A. I. (2009). Computing invariants and semi-invariants by means of Frobenius Lie algebras. J. Algebra, 321, 1293--1312. https://doi.org/10.1016/j.jalgebra.2008.10.026
Pham, D. N. (2016). G-Quasi-Frobenius Lie Algebras. Archivum Mathematicum, 52(4), 233–262. https://doi.org/10.5817/AM2016-4-233
Souza, J. . (2019). Sufficient conditions for dispersiveness of invariant control affine system on the Heisenberg group. System &Control Letters, 124, 68--74.
Stachura, P. (2013). On the quantum ax+b group. Journal of Geometry and Physics, 73, 125--149.
Szechtman, F. (2014). Modular representations of Heisenberg algebras. Linear Algebra and Its Applications, 457, 49--60.
Zeitlin,A.M. (2012). Unitary representations of a loop ax+b group, Wiener measure and Gamma -function. Journal of Functional Analysis, 263(3), 529--548.
DOI: https://doi.org/10.31764/jtam.v4i2.2339
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Edi Kurniadi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: