A Mathematical Model Analysis of COVID-19 Transmission with Vaccination in Caputo Fractional Derivatives: Case Study in Indonesia

Muhammad Rifki Nisardi, Kasbawati Kasbawati, Khaeruddin Khaeruddin

Abstract


This study aims to investigate a fractional-order mathematical model of COVID-19 transmission using the Caputo derivative definition which suitable to epidemiological cases by its advantage to explain memory effects. The model incorporates compartments for asymptomatic infections and includes a vaccination strategy aimed at mitigating the spread of COVID-19. We derived the disease-free and endemic equilibrium points for the fractional model and computed the basic reproduction number (R_0 )  using the Next-generation Matrix method. Additionally, we conducted sensitivity analyses of parameters affecting R_0. The stability of the fractional model requires specific conditions to be met by the model parameters. To approximate active COVID-19 cases in Indonesia, we utilized the Explicit Grunwald-Letnikov method which well fit with Caputo fractional differential system. Simulation results demonstrate that the fractional-order model offers a flexible approach for modelling active COVID-19 cases in these regions. We found that fractional order for active cases COVID-19 in Indonesia is α=0.9856. The simulation showed that decreasing the vaccination rate and the efficacy of the vaccine would affect the reduction of COVID-19 transmission.

Keywords


SEIAR-V Model; COVID-19 Model; Basic Reproduction Number; Fractional Model; Grunwald-Letnikov Method.

Full Text:

DOWNLOAD [PDF]

References


Ahmed, E., El-Sayed, A., & El-Saka, H. (2006). On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Physics Letters A, 358, 1–4. https://doi.org/10.1016/j.physleta.2006.04.087

Aldila, D., Khoshnaw, S. H. A., Safitri, E., Anwar, Y. R., Bakry, A. R. Q., Samiadji, B. M., Anugerah, D. A., Gh, M. F. A., Ayulani, I. D., & Salim, S. N. (2020). A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: The case of Jakarta, Indonesia. Chaos, Solitons & Fractals, 139, 110042. https://doi.org/10.1016/j.chaos.2020.110042

Annas, S., Isbar Pratama, Muh., Rifandi, Muh., Sanusi, W., & Side, S. (2020). Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. Chaos, Solitons & Fractals, 139, 110072. https://doi.org/10.1016/j.chaos.2020.110072

Askar, S. S., Ghosh, D., Santra, P. K., Elsadany, A. A., & Mahapatra, G. S. (2021). A fractional order SITR mathematical model for forecasting of transmission of COVID-19 of India with lockdown effect. Results in Physics, 24, 104067. https://doi.org/10.1016/j.rinp.2021.104067

Barros, L. C. de, Lopes, M. M., Pedro, F. S., Esmi, E., Santos, J. P. C. dos, & Sánchez, D. E. (2021). The memory effect on fractional calculus: An application in the spread of COVID-19. Computational and Applied Mathematics, 40(3), 72. https://doi.org/10.1007/s40314-021-01456-z

Bas, E., Acay, B., & Ozarslan, R. (2019). Fractional models with singular and non-singular kernels for energy efficient buildings. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(2), 23110. https://doi.org/10.1063/1.5082390

Belgaid, Y., Helal, M., Lakmeche, A., & Venturino, E. (2021). A mathematical study of a coronavirus model with the caputo fractional-order derivative. Fractal and Fractional, 5(3). https://doi.org/10.3390/fractalfract5030087

Bernal, J., Gómez-Aguilar, J. F., Cordova, T., Guzman-Cabrera, R., & Rosales, J. (2012). Fractional Mechanical Oscillators. Revista Mexicana de F’isica, 58, 348–352. https://www.researchgate.net/publication/257924332_Fractional_Mechanical_Oscillators

Carvalho, J. P. S. M. de, & Moreira-Pinto, B. (2021). A fractional-order model for CoViD-19 dynamics with reinfection and the importance of quarantine. Chaos, Solitons & Fractals, 151, 111275. https://doi.org/10.1016/j.chaos.2021.111275

Chávez, J., Goetz, T., Siegmund, S., & Wijaya, K. (2017). An SIR-Dengue transmission model with seasonal effects and impulsive control. Mathematical Biosciences, 289. https://doi.org/10.1016/j.mbs.2017.04.005

Choi, S., Kang, B., & Koo, N. (2014). Stability for Caputo Fractional Differential Systems. Abstract and Applied Analysis, 2014, 1–6. https://doi.org/10.1155/2014/631419

Gómez-Aguilar, J. F., Rosales, J., & Guía, M. (2013). RLC electrical circuit of non-integer order. Central European Journal of Physics, 11. https://doi.org/10.2478/s11534-013-0265-6

Iboi, E. A., Ngonghala, C. N., & Gumel, A. B. (2020). Will an imperfect vaccine curtail the COVID-19 pandemic in the U.S.? Infectious Disease Modelling, 5, 510–524. https://doi.org/10.1016/j.idm.2020.07.006

Keshtkar, F., Erjaee, G. H., & Boutefnouchet, M. (2014). On stability of equilibrium points in nonlinear fractional differential equations and fractional Hamiltonian systems. Complexity, 21. https://doi.org/10.1002/cplx.21581

Müller, S., Kästner, M., Brummund, J., & Ulbricht, V. (2011). A nonlinear fractional viscoelastic material model for polymers. Computational Materials Science - COMPUT MATER SCI, 50, 2938–2949. https://doi.org/10.1016/j.commatsci.2011.05.011

Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D., & Mbogo, R. (2020). SEIR model for COVID-19 dynamics incorporating the environment and social distancing. BMC Research Notes, 13(1), 352. https://doi.org/10.1186/s13104-020-05192-1

Ndaïrou, F., Area, I., Nieto, J. J., Silva, C. J., & Torres, D. F. M. (2021). Fractional model of COVID-19 applied to Galicia, Spain and Portugal. Chaos, Solitons & Fractals, 144, 110652. https://doi.org/10.1016/j.chaos.2021.110652

Ndairou, F., Area, I., Nieto, J., Silva, C., & Torres, D. F. M. (2021). Fractional model of COVID-19 applied to Galicia, Spain and Portugal. Chaos, Solitons & Fractals, 144, 110652. https://doi.org/10.1016/j.chaos.2021.110652

Ozalp, N., & Demirci, E. (2011). A fractional order SEIR model with vertical transmission. Mathematical and Computer Modelling, 54, 1–6. https://doi.org/10.1016/j.mcm.2010.12.051

Petráš, I. (2011). Fractional Calculus. In I. Petráš (Ed.), Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (pp. 7–42). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-18101-6_2

Pimenov, A., Kelly, T. C., Korobeinikov, A., O’Callaghan, M. J. A., Pokrovskii, A. V., & Rachinskii, D. (2012). Memory Effects in Population Dynamics: Spread of Infectious Disease as a Case Study. Mathematical Modelling of Natural Phenomena, 7(3), 204–226. https://doi.org/10.1051/mmnp/20127313

Rihan, F. A. (2013). Numerical modeling of fractional-order biological systems. Abstract and Applied Analysis, 2013. https://doi.org/10.1155/2013/816803

Saad, K. (2021). Fractal-fractional Brusselator chemical reaction. Chaos Solitons & Fractals, 150, 111087. https://doi.org/10.1016/j.chaos.2021.111087

Tang, B. (2020). Dynamics for a fractional-order predator-prey model with group defense. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-61468-3




DOI: https://doi.org/10.31764/jtam.v8i4.24711

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Muhammad Rifki Nisardi, Kasbawati, Khaeruddin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: