Modeling the Dynamics of Forest Fires: A Vector Autoregressive Approach Across Three Fire Classifications
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Alisjahbana, A. S., & Busch, J. M. (2017). Forestry, Forest Fires, and Climate Change in Indonesia. Bulletin of Indonesian Economic Studies, 53(2), 111–136. https://doi.org/10.1080/00074918.2017.1365404
Apergis, E., & Apergis, N. (2021). The impact of COVID-19 on economic growth: evidence from a Bayesian Panel Vector Autoregressive (BPVAR) model. Applied Economics, 53(58), 6739–6751. https://doi.org/10.1080/00036846.2021.1946479
Box, G. E. P., & Jankins, G. M. (1976). Time Series Analysis Forecasting and Control. Wiley.
Carmenta, R., Zabala, A., Daeli, W., & Phelps, J. (2017a). Perceptions across scales of governance and the Indonesian peatland fires. Global Environmental Change, 46, 50–59. https://doi.org/10.1016/j.gloenvcha.2017.08.001
Carmenta, R., Zabala, A., Daeli, W., & Phelps, J. (2017b). Perceptions across scales of governance and the Indonesian peatland fires. Global Environmental Change, 46, 50–59. https://doi.org/10.1016/j.gloenvcha.2017.08.001
Carta, F., Zidda, C., Putzu, M., Loru, D., Anedda, M., & Giusto, D. (2023). Advancements in Forest Fire Prevention: A Comprehensive Survey. Sensors, 23(14), 6635. https://doi.org/10.3390/s23146635
Clarke, H., Nolan, R. H., De Dios, V. R., Bradstock, R., Griebel, A., Khanal, S., & Boer, M. M. (2022a). Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nature Communications, 13(1), 7161. https://doi.org/10.1038/s41467-022-34966-3
Clarke, H., Nolan, R. H., De Dios, V. R., Bradstock, R., Griebel, A., Khanal, S., & Boer, M. M. (2022b). Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nature Communications, 13(1), 7161. https://doi.org/10.1038/s41467-022-34966-3
Cryer, D. J., & Chan, K.-S. (2008). Time Series Analysis: With Application in R. Springer Science and Bussiness Media.
Edwards, S. A., & Heiduk, F. (2015). Hazy Days: Forest Fires and the Politics of Environmental Security in Indonesia. Journal of Current Southeast Asian Affairs, 34(3), 65–94. https://doi.org/10.1177/186810341503400303
Fall, S., N’Guessan, A., Iraci, F., & Koutouan, A. (2020). Forecasting the French Personal Services Sector Wage Bill: A VARIMA Approach (pp. 119–134). https://doi.org/10.1007/978-3-030-13697-0_9
Fruet Dias, G., & Kapetanios, G. (2017). Supplement To “Estimation and Forecasting in Vector Autoregressive Moving Average Models for Rich Datasets.” SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2830838
Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., & Aryal, J. (2019a). Forest Fire Susceptibility and Risk Mapping Using Social/Infrastructural Vulnerability and Environmental Variables. Fire, 2(3), 50. https://doi.org/10.3390/fire2030050
Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., & Aryal, J. (2019b). Forest Fire Susceptibility and Risk Mapping Using Social/Infrastructural Vulnerability and Environmental Variables. Fire, 2(3), 50. https://doi.org/10.3390/fire2030050
Kaur, J., Parmar, K. S., & Singh, S. (2023a). Autoregressive models in environmental forecasting time series: a theoretical and application review. Environmental Science and Pollution Research, 30(8), 19617–19641. https://doi.org/10.1007/s11356-023-25148-9
Kaur, J., Parmar, K. S., & Singh, S. (2023b). Autoregressive models in environmental forecasting time series: a theoretical and application review. Environmental Science and Pollution Research, 30(8), 19617–19641. https://doi.org/10.1007/s11356-023-25148-9
Khan, F., Saeed, A., & Ali, S. (2020). Modelling and forecasting of new cases, deaths and recover cases of COVID-19 by using Vector Autoregressive model in Pakistan. Chaos, Solitons & Fractals, 140, 110189. https://doi.org/10.1016/j.chaos.2020.110189
Meimela, A., Lestari, S. S. S., Mahdy, I. F., Toharudin, T., & Ruchjana, B. N. (2021). Modeling of Covid-19 in Indonesia using Vector Autoregressive Integrated Moving Average. Journal of Physics: Conference Series, 1722(1), 012079. https://doi.org/10.1088/1742-6596/1722/1/012079
Muhammad, K., Khan, S., Elhoseny, M., Hassan Ahmed, S., & Wook Baik, S. (2019). Efficient Fire Detection for Uncertain Surveillance Environment. IEEE Transactions on Industrial Informatics, 15(5), 3113–3122. https://doi.org/10.1109/TII.2019.2897594
Ramyar, S., & Kianfar, F. (2019). Forecasting Crude Oil Prices: A Comparison Between Artificial Neural Networks and Vector Autoregressive Models. Computational Economics, 53(2), 743–761. https://doi.org/10.1007/s10614-017-9764-7
Reinsel, G. C. (1993). Vector ARMA Time Series Models and Forecasting (pp. 21–51). https://doi.org/10.1007/978-1-4684-0198-1_2
Rossi, F., & Becker, G. (2019). Creating forest management units with Hot Spot Analysis (Getis-Ord Gi*) over a forest affected by mixed-severity fires. Australian Forestry, 82(4), 166–175. https://doi.org/10.1080/00049158.2019.1678714
Rusyana, A., Tatsara, N., Balqis, R., & Rahmi, S. (2020). Application of Clustering and VARIMA for Rainfall Prediction. IOP Conference Series: Materials Science and Engineering, 796(1), 012063. https://doi.org/10.1088/1757-899X/796/1/012063
Schaffer, A. L., Dobbins, T. A., & Pearson, S.-A. (2021). Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: a guide for evaluating large-scale health interventions. BMC Medical Research Methodology, 21(1), 58. https://doi.org/10.1186/s12874-021-01235-8
Singh, S., Parmar, K. S., Kumar, J., & Makkhan, S. J. S. (2020). Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19. Chaos, Solitons & Fractals, 135, 109866. https://doi.org/10.1016/j.chaos.2020.109866
Suhartono, S., Prastyo, D. D., Kuswanto, H., & Lee, M. H. (2018). Comparison between VAR, GSTAR, FFNN-VAR and FFNN-GSTAR Models for Forecasting Oil Production. MATEMATIKA, 34(1), 103–111. https://doi.org/10.11113/matematika.v34.n1.1040
Tsay, R. S. (2014). Multivariate Time Series Analysis with R and Financial Applications. Wiley.
Wei, W. W. S. (2006). Time Series Analysis Univariate and Multivariate Methods (2nd ed.). Addison Wesley.
Xu, H., Ding, F., & Yang, E. (2021). Three‐stage multi‐innovation parameter estimation for an exponential autoregressive time‐series model with moving average noise by using the data filtering technique. International Journal of Robust and Nonlinear Control, 31(1), 166–184. https://doi.org/10.1002/rnc.5267
DOI: https://doi.org/10.31764/jtam.v8i4.24792
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nur'ainul Miftahul Huda, Nurfitri Imro'ah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: