Analysis of Factor Affecting Tuberculosis Cases in West Java Province Using Panel Data Regression Approach
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Amjani, A., & Cusmarih, C. (2023). Hubungan Lingkungan Rumah Terhadap Kejadian Tuberkulosis Paru di RSUD Kabupaten Bekasi. MAHESA : Malahayati Health Student Journal, 3(10), 3131–3140. https://doi.org/10.33024/mahesa.v3i10.11007
Asemahagn, M. A., Alene, G. D., & Yimer, S. A. (2021). Spatial-temporal clustering of notified pulmonary tuberculosis and its predictors in East Gojjam Zone, Northwest Ethiopia. PLoS ONE, 16(1), 1–19. https://doi.org/10.1371/journal.pone.0245378
Bell, A., Fairbrother, M., & Jones, K. (2019). Fixed and random effects models: making an informed choice. Quality and Quantity, 53(2), 1051–1074. https://doi.org/10.1007/s11135-018-0802-x
Biørn, E. (2016). Econometrics of Panel Data: Methods and Applications. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198753445.001.0001
Brilliant, I. I., & Fakhriyana, D. (2023). Modeling The Number Of Tuberculosis Cases In West Java Using The Negative Binomial Approach. Consilium Sanitatis: Journal of Health Science and Policy, 1(2), 107–119. https://doi.org/10.56855/jhsp.v1i2.282
Dewi Anggraeni Chairunnisa, A., & Fauzan, A. (2023). Implementation of Panel Data Regression in the Analysis of Factors Affecting Poverty Levels in Bengkulu Province in 2017-2020. EKSAKTA: Journal of Sciences and Data Analysis, 4(1), 40–45. https://doi.org/10.20885/eksakta.vol4.iss1.art5
Djalic, I., & Terzic, S. (2021). Violation of the assumption of homoscedasticity and detection of heteroscedasticity. Decision Making: Applications in Management and Engineering, 4(1), 1–18. https://doi.org/10.31181/dmame2104001d
Feng, S., Li, G., Tong, T., & Luo, S. (2020). Testing for heteroskedasticity in two-way fixed effects panel data models. Journal of Applied Statistics, 47(1), 91–116. https://doi.org/10.1080/02664763.2019.1634682
Grigore, G. E., Musetescu, R. C., Nicolae, S., & Vladut, O. (2022). A panel data analysis in estimating the economic growth for oil-producing countries.Evidence from the caspian region. Economic Computation and Economic Cybernetics Studies and Research, 56(4), 225–242. https://doi.org/10.24818/18423264/56.4.22.14
Hsiao, C. (2014). Analysis of panel data: Third edition. Analysis of Panel Data: Third Edition, 1–539. https://doi.org/10.1017/CBO9781139839327
Ismaeel, S. S., Midi, H., & Sani, M. (2021). Robust multicollinearity diagnostic measure for fixed effect panel data model. Malaysian Journal of Fundamental and Applied Sciences, 17(5), 636–646. https://doi.org/10.11113/MJFAS.V17N5.2391
Karavias, Y., Narayan, P. K., & Westerlund, J. (2023). Structural Breaks in Interactive Effects Panels and the Stock Market Reaction to COVID-19. Journal of Business and Economic Statistics, 41(3), 653–666. https://doi.org/10.1080/07350015.2022.2053690
Kementerian Kesehatan RI. (2020). Pedoman Nasional Pelayanan Kedokteran Tata Laksana Tuberkulosis. https://tbindonesia.or.id/download/9840/?tmstv=1718644405
Kementerian Kesehatan RI. (2023). Laporan Program Penanggulangan Tuberkulosis Tahun 2022 Kementerian Kesehatan Republik Indonesia Tahun 2023. https://tbindonesia.or.id/wp-content/uploads/2023/09/Laporan-Tahunan-Program-TBC-2022.pdf
Liao, N., & He, Y. (2018). Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model. Energy, 158, 782–795. https://doi.org/10.1016/j.energy.2018.06.049
Maison, D. P. (2022). Tuberculosis pathophysiology and anti-VEGF intervention. In Journal of Clinical Tuberculosis and Other Mycobacterial Diseases (Vol. 27). Elsevier Ltd. https://doi.org/10.1016/j.jctube.2022.100300
Marcoulides, K. M., & Raykov, T. (2019). Evaluation of Variance Inflation Factors in Regression Models Using Latent Variable Modeling Methods. Educational and Psychological Measurement, 79(5), 874–882. https://doi.org/10.1177/0013164418817803
Muhith, A., Susanto, I. H., Rahmalia, D., Adzkiya, D., & Herlambang, T. (2022). The Analysis of Demand and Supply of Blood in Hospital in Surabaya City Using Panel Data Regression. Nonlinear Dynamics and Systems Theory, 22(5), 550–560.
Piratla, S., & Singh, B. K. (2023). Airport passenger movement, revenue and expenditure at non-major airports using panel data regression. Social Sciences and Humanities Open, 8(1), 1–18. https://doi.org/10.1016/j.ssaho.2023.100658
Pratiwi, K. D. (2022). E-Commerce and Economic Growth in Indonesia: Analysis of Panel Data Regression. Gema Publica, 7(1), 171–186. https://doi.org/10.14710/gp.7.1.2022.171-186
Prunier, J. G., Colyn, M., Legendre, X., Nimon, K. F., & Flamand, M. C. (2015). Multicollinearity in spatial genetics: Separating the wheat from the chaff using commonality analyses. Molecular Ecology, 24(2), 263–283. https://doi.org/10.1111/mec.13029
Purwanto, E. (2020). Analysis of The Effect of Healthy and Healthy Life and Health (PHBS) Behavior of Tuberculosis Events. Journal of Public Health Science Research, 1(1), 5. https://doi.org/10.30587/jphsr.v1i1.1179
Puspita, S. N., Maryani, S., & Purwantho, H. (2021). Analisis Faktor-Faktor Yang Mempengaruhi Penyerapan Tenaga Kerja Di Provinsi Jawa Tengah. Jurnal Ilmiah Matematika Dan Pendidikan Matematika, 13(2), 141. https://doi.org/10.20884/1.jmp.2021.13.2.4546
Rahmawati, N., Karno, F., & Hermanto, E. M. P. (2024). Analisis Penyakit Tuberkulosis (TBC) pada Provinsi Jawa Timur Tahun 2021 Menggunakan Geographically Weighted Regression (GWR). Indonesian Journal of Applied Statistics, 6(2), 116. https://doi.org/10.13057/ijas.v6i2.78593
Ratnasari, V., Audha, S. H., & Dani, A. T. R. (2023a). Statistical modeling to analyze factors affecting the middle-income trap in Indonesia using panel data regression. MethodsX, 11. https://doi.org/10.1016/j.mex.2023.102379
Ratnasari, V., Audha, S. H., & Dani, A. T. R. (2023b). Statistical modeling to analyze factors affecting the middle-income trap in Indonesia using panel data regression. MethodsX, 11(July), 102379. https://doi.org/10.1016/j.mex.2023.102379
Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1
Suherni, N., & Maduratna. (2013). Analisis Pengelompokan Kecamatan di Kota Surabaya Berdasarkan Faktor Penyebab Terjadinya Penyakit Tuberkulosis. Jurnal Sains Dan Seni ITS, 2(1), 2337–3520.
Utari, D. T., Yuliana, T., & Hendradewa, A. P. (2020). A Panel Data Analysis of Rice Production in Ngawi Regency, East Java. 474, 212–217. https://doi.org/10.2991/assehr.k.201010.031
Uyanık, G. K., & Güler, N. (2013). A Study on Multiple Linear Regression Analysis. Procedia - Social and Behavioral Sciences, 106, 234–240. https://doi.org/10.1016/j.sbspro.2013.12.027
Wardhana, F. A., & Indawati, R. (2021). Panel Data Regression Analysis For Factors Affecting Infant Mortality Rate In East Java 2013-2017. Indonesian Journal of Public Health, 16(3), 437–448. https://doi.org/10.20473/ijph.v16i3.2021.437-448
Wong, M. K. ai, Yadav, R. P., Nishikiori, N., & Eang, M. T. an. (2013). The association between household poverty rates and tuberculosis case notification rates in Cambodia, 2010. Western Pacific Surveillance and Response Journal : WPSAR, 4(1), 25–33. https://doi.org/10.5365/WPSAR.2013.4.1.002
DOI: https://doi.org/10.31764/jtam.v8i4.24795
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Toha Saifudin, Arlisya Shafwan Aisyah, Irma Ayu Indrasta, Dita Amelia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: