The Value at Risk Analysis using Heavy-Tailed Distribution on the Insurance Claims Data
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Abousrafa, A., Olewski, T., & Véchot, L. (2024). Use of a two-parameter Weibull distribution for the description of the particle size effect on dust minimum explosible concentration. Journal of Loss Prevention in the Process Industries, 88(2024). https://doi.org/10.1016/j.jlp.2024.105269
Adiyansyah, F., Widodo, V. R., Rais Anwar, Y., & Sari, K. N. (2023). Pemodelan Besar Klaim menggunakan Distribusi Berekor dan Tail-Value-at-Risk (TVaR) pada Data Sampel Badan Penyelenggara Jaminan Sosial (BPJS) Kesehatan. Jurnal Statistika Dan Aplikasinya, 7(2). https://doi.org/10.21009/JSA.07207
Afify, A. Z., Gemeay, A. M., & Ibrahim, N. A. (2020). The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data. Mathematics, 8(8), 1276. https://doi.org/10.3390/math8081276
Ahmad, Z., & Hussain, Z. (2017). Flexible Weibull Extended Distribution. MAYFEB Journal of Materials Science , 2(2017), 5–18. https://mayfeb.com/index.php/MAT/article/view/188/188
Aljeddani, S. M. A., & Mohammed, M. A. (2023). A novel approach to Weibull distribution for the assessment of wind energy speed. Alexandria Engineering Journal, 78(18), 56–64. https://doi.org/10.1016/j.aej.2023.07.027
Dinh, V., Si, L., Ho, T., Nguyen, D., & Nguyen, B. T. (2016). Fast learning rates with heavy-tailed losses. In D. Lee, M. Sugiyama, U. Luxburg I. Guyon and, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 29 (NIPS 2016) (pp. 1–9). https://proceedings.neurips.cc/paper_files/paper/2016/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf
Gray, R. J., & Pitts, S. M. (2012). Risk Modelling in General Insurance : From Principles to Practice. Cambridge University Press. https://doi.org/https://doi.org/10.1017/CBO9781139033756
Gucciardi, E., Mathew, R., Demelo, M., & Bondy, S. J. (2011). Profiles of smokers and non-smokers with type 2 diabetes: Initial visit at a diabetes education centers. Primary Care Diabetes, 5(3), 185–194. https://doi.org/10.1016/j.pcd.2011.03.001
Hogg, R. V., McKean, J. W. , & Craig, A. T. (2019). Introduction to Mathematical Statistics (8th edition). Pearson Education. https://minerva.it.manchester.ac.uk/~saralees/statbook2.pdf
Jurić, V. (2017). Univariate Weibull Distributions and Their Applications. ENTRENOVA - Enterprise Research Innovation Conference, 451–458. https://ssrn.com/abstract=3282606
Keçeci, N. F., & Sarul, L. S. (2014). Application of Value at Risk (VaR) Models on Insurance Claim Data. 9th International Statistic Days Symposium, 87–94. http://josunas.selcuk.edu.tr/login/index.php/josunas/article/view/509
Klugman, S. A. , Panjer, H. H. , & Willmot, G. E. (2019). Loss models: from data to decisions. (Fourth edition). A John Wiley & Sons, Inc., Publication. https://www.wiley.com/en-nl/Loss+Models%3A+From+Data+to+Decisions%2C+5th+Edition-p-9781119523789
Marambakuyana, W. A., & Shongwe, S. C. (2024). Quantifying Risk of Insurance Claims Data Using Various Loss Distributions. Journal of Statistics Applications and Probability, 13(3), 1031–1044. https://doi.org/10.18576/jsap/130315
Nadarajah, S., & Kwofie, C. (2022). Heavy tailed modeling of automobile claim data from Ghana. Journal of Computational and Applied Mathematics, 405(2022). https://doi.org/10.1016/j.cam.2021.113947
Obadović, M., Petrović, E., Vunjak, N., & Ilić, M. (2016). Assessing the accuracy of delta-normal VaR evaluation for Serbian government bond portfolio. Economic Research-Ekonomska Istrazivanja , 29(1), 475–484. https://doi.org/10.1080/1331677X.2016.1174391
Pahrany, A. D., Aeli, L. W., & Mukhaiyar, U. (2024). Value at Risk Analysis using Automated Threshold Selection Method in Property Insurance. The 3rd International Conference on Mathematics and Its Applications (ICoMathApp) 2022, 020022. https://doi.org/10.1063/5.0193668
Riad, F. H., Radwan, A., Almetwally, E. M., & Elgarhy, M. (2023). A new heavy tailed distribution with actuarial measures. Journal of Radiation Research and Applied Sciences, 16(2), 100562. https://doi.org/10.1016/j.jrras.2023.100562
Rohiim, M. D. N., & Mutaqin, A. K. (2023). Pemodelan Data Frekuensi Klaim Asuransi Kendaraan Bermotor untuk Cakupan Third Party Liability Menggunakan Distribusi Poisson-Aradhana. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(2), 1376–1385. https://doi.org/10.46306/lb.v4i2.414
Shukla, S. K. (2022). Insurance Claim Analysis: Demographic and Health. https://www.kaggle.com/datasets/thedevastator/insurance-claim-analysis-demographic-and-health/.
Snipes, M., & Taylor, D. C. (2014). Model selection and Akaike Information Criteria: An example from wine ratings and prices. Wine Economics and Policy, 3(1), 3–9. https://doi.org/10.1016/j.wep.2014.03.001
Syuhada, K., Hakim, A., & Nur’aini, R. (2023). The expected-based value-at-risk and expected shortfall using quantile and expectile with application to electricity market data. Communications in Statistics: Simulation and Computation, 52(7), 3104–3121. https://doi.org/10.1080/03610918.2021.1928191
Teramae, J. N., & Fukai, T. (2014). Computational implications of lognormally distributed synaptic weights. Proceedings of the IEEE, 102(4), 500–512. https://doi.org/10.1109/JPROC.2014.2306254
Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). Probability & Statistics for Engineers & Scientists (9th Edition). Pearson Education Limited. https://spada.uns.ac.id/pluginfile.php/221008/mod_resource/content/1/ProbabilityStatistics_for_EngineersScientists(9th_Edition)_Walpole.pdf
Wu, M. H., Wang, J. P., & Ku, K. W. (2019). Earthquake, Poisson and Weibull distributions. Physica A: Statistical Mechanics and Its Applications, 526(C). https://doi.org/10.1016/j.physa.2019.04.237
Xie, S. (2023). Modelling auto insurance Size-of-Loss distributions using Exponentiated Weibull distribution and de-grouping methods. Expert Systems with Applications, 231(1), 120763. https://doi.org/10.1016/j.eswa.2023.120763
Yildirim, I. (2015). Financial Risk Measurement for Turkish Insurance Companies Using VaR Models. Journal of Financial Risk Management, 04(03), 158–167. https://doi.org/10.4236/jfrm.2015.43013
Yousof, H. M., Tashkandy, Y., Emam, W., Ali, M. M., & Ibrahim, M. (2023). A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data. Mathematics, 11(4), 966. https://doi.org/10.3390/math11040966
Zeng, X., Wang, D., & Wu, J. (2015). Evaluating the Three Methods of Goodness of Fit Test for Frequency Analysis. Journal of Risk Analysis and Crisis Response, 5(3), 178–187. https://www.jracr.com/index.php/jracr/article/view/151
Zhao, W., Gao, Y., & Wang, M. (2022). Measuring liquidity with return volatility: An analytical approach based on heavy-tailed Censored-GARCH model. North American Journal of Economics and Finance, 62(C). https://doi.org/10.1016/j.najef.2022.101774
DOI: https://doi.org/10.31764/jtam.v8i4.25053
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Utriweni Mukhaiyar, Aprilia Dianpermatasari, Azizah Dzakiya, Sasqia Bunga Widyani, Husnul Khatimah Syam
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: