Analysis Stability of the Model SEI_1 I_2 I_3 R on the Spread of TikTok User
Abstract
TikTok addicts, namely content creators (I_1), people who shop (I_2), and people who watch TikTok content (I_3) in Indonesia, continue to increase from year to year. The dynamics of TikTok addicts are analogous to cases of disease transmission. This can be done because TikTok users (S) can gradually increase to become account owners (E), then because there is interaction between account owners and groups of TikTok addicts, TikTok addicts increase, increase or spread. However, TikTok addicts can recover (R) and become vulnerable again over time. Each TikTok addict can have different negative impacts, such as wasting time, getting inaccurate information that can spread people, being deceived, and can disrupt mental health such as depression. Therefore, it is necessary to know which group of TikTok addicts has the greatest influence on the increase in TikTok users in Indonesia so that the government can take action to reduce the increase in TikTok users. In this research, the mathematical dynamics model (〖SEI〗_1 I_2 I_3 R)was first constructed. Analysis of the stability of the model's equilibrium point is carried out by determining the eigenvalues and the Jacobian matrix to obtain an equilibrium point that is free from the influence of Tik Tok addicts, asymptotically stable if R_0=0.941019<1. This means that the influence of TikTok addicts on increasing TikTok users is slowly decreasing and will disappear from the population as time goes by. The endemic equilibrium point is asymptotically stable if R_0=1.011756>1. This means that the influence of TikTok addicts on the increase in TikTok users will remain in the population and will increase over time. Numerical simulations were carried out using MAPLE software.
Keywords
Full Text:
DOWNLOAD [PDF]References
Abi, M. M., Bano, E. N., Obe, L. F., & Blegur, F. M. A. (2023). Mathematical Modeling And Simulation Of Social Media Addiction Tiktok Using Sei1i2r Type Model. Jurnal Diferensial. 5(1), 43-55 https://doi.org/10.35508/jd.v5i1.10401
Al-Khasawneh, M., Sharabati, A. A. A., Al-Haddad, S., Tbakhi, R., & Abusaimeh, H. (2022). The adoption of TikTok application using TAM model. International Journal of Data and Network Science. 6(4), 1389-1402 https://doi.org/10.5267/j.ijdns.2022.5.012
Alemneh, H. T., & Alemu, N. Y. (2021). Mathematical modeling with optimal control analysis of social media addiction. Infectious Disease Modelling. 6, 405-419. https://doi.org/10.1016/j.idm.2021.01.011
Bahri, S., Pratama, E. A., & Efendi, E. (2023). Pemodelan Dinamika Pejudi Muda. MES: Journal of Mathematics Education and Science, 9(1), 45–56. https://jurnal.uisu.ac.id/index.php/mesuisu/article/view/8066/pdf
Bahri, S., Fitrialita, I., Nasution, H., Lestari, R., & Fajria, L. (2024). Analysis of the Effects of Foreign Travelers and Immigrants on Omicron Transmission in Indonesia. International Journal of Mathematics and Computer Science. 19(3), 893-902. https://doi.org/10.55927/fjsr.v3i5.9318
Bahri, S., Ningsih, S. A., & Narwen, N. (2023). Kestabilan model penularan penyakit malaria di Indonesia. Delta-Pi: Jurnal Matematika Dan Pendidikan Matematika. 12(2), 90-99. https://doi.org/10.33387/dpi.v12i2.6767
Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28, 365–382. https://doi.org/https://doi.org/10.1007/BF00178324
Escalante, R., & Odehnal, M. (2020). A deterministic mathematical model for the spread of two rumors. Afrika Matematika. https://doi.org/10.1007/s13370-019-00726-8
Hazisyah, H., Rince Putri, A., & Bahri, S. (2021). Analisis Kestabilan Model P Rey − P Redat Or Holling Tipe III. Jurnal Matematika UNAND. 10(1), 29-37. https://doi.org/10.25077/jmu.10.1.29-37.2021
Khairunnisa, S., Bahri, S., & Lestari, R. (2021). Model Prediksi Jumlah Penderita Covid-19 Dengan Laju Pertumbuhan Tak Konstan. Jurnal Matematika UNAND. 9(4), 302-309. https://doi.org/10.25077/jmu.9.4.302-309.2020
Kuttler, K. (2017). Elementary differential equations. In Elementary Differential Equations. https://doi.org/10.1201/9781315183138
Lasif, W. A., Bahri, S., & Lestari, R. (2021). Pencocokan Kurva Penderita Covid-19 Di Sumatera Barat Dengan Model Hampir Eksponensial. Jurnal Matematika UNAND. 10(4), 456-463. https://doi.org/10.25077/jmu.10.4.456-463.2021
Li, L., & Kang, K. (2020). Analyzing shopping behavior of the middle-aged users in tiktok live streaming platform. 26th Americas Conference on Information Systems, AMCIS 2020.
Putri, A. D., Bahri, S., & Baqi, A. I. (2023). Analisis Kestabilan Model Susceptible Infected Isolation Hospitalized Recovered (SIIsHR) pada Penyebaran COVID-19. MAJAMATH: Jurnal Matematika Dan Pendidikan Matematika, 6(2), 96–110. https://doi.org/https://doi.org/10.36815/majamath.v6i2.2879
Putri, A. R., Nabila, Z., & Bahri, S. (2023). Analyzing And Estimating Parameters Of Covid-19 Transmission With Vaccination In Indonesia. Communications in Mathematical Biology and Neuroscience. https://doi.org/10.28919/cmbn/8128
Riyanto, A. D. (2023). Indonesian Digital Report 2023. We Are Social.
Ross, S. L. (1984). Differential Equations: Third Edition. New York: Jhon Wiley and Sins.
Tang, L. (2021). Influence Of Tiktok Usage Toward Positive Emotion And Relationship. https://doi.org/10.15405/epsbs.2021.06.02.36
Van Den Driessche, P., & Watmough, J. (2008). Further notes on the basic reproduction number. Lecture Notes in Mathematics. https://doi.org/10.1007/978-3-540-78911-6_6
Wang, Y. (2023). The Spread of TikTok’s Influence Worldwide from the View of the SIRO Model. https://doi.org/10.2991/978-94-6463-198-2_20
DOI: https://doi.org/10.31764/jtam.v8i4.25762
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Susila Bahri, Sri Afdianti, Zulakmal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: