Comparison of Nonparametric Path Analysis and Biresponse Regression using Truncated Spline Approach

Laila Nur Azizah, Usriatur Rohma, Adji Achmad Rinaldo Fernandes, Ni Wayan Surya Wardhani, Suci Astutik

Abstract


Nonparametric path analysis and biresponse nonparametric regression are two flexible statistical approaches to analyze the relationship between variables without assuming a certain form of relationship. This study compares the performance of the two methods with the truncated spline approach, which has the advantage of determining the shape of the regression curve through optimal selection of knot points. This study aims to evaluate the best model based on linear and quadratic polynomial degree with 1, 2, and 3 knot points. The model is applied to data with 100 samples and simulated data of various sample levels. The results show that the best model in nonparametric path analysis is a quadratic model with three knots, while the best model in biresponse nonparametric regression is a quadratic model with two knots. Biresponse nonparametric regression has a coefficient of determination of 88.8% which is higher than the nonparametric path analysis of 70.9%. The best biresponse nonparametric regression model is the model with quadratic order and two knots.


Keywords


Nonparametric Path Analysis; Data Biresponse Regression; Truncated Spline; Linear.

Full Text:

DOWNLOAD [PDF]

References


Aidi, M. N., & Saufitra, I. (2007). Perbaikan Metode Kriging Biasa (Ordinary Kriging) Melalui Pemecahan Matriks C Menjadi Beberapa Anak Matriks Non Overlap Untuk Mewakili Drift Pada Peubah Spasial. In Forum Statistika dan Komputasi, 12(1).

Efendi, E. C. L., Achmad, A., Fernandes, R., Bernadetha, M., & Mitakda, T. (2021). Modeling of Path Nonparametric Truncated Spline Linear, Quadratic, and Cubic in Model on Time Paying Bank Credit.DOI/URL?

Eubank, R. L. (1999). Nonparametric Regression and Spline Smoothing. CRC Press. https://doi.org/10.1201/9781482273144

Fernandes, A. A. R. (2016). Estimator Spline Dalam Regresi Nonparametrik Birespon Untuk Data Longitudinal Studi Kasus Pada Pasien Penderita Tb Paru Di Malang. Institut Teknologi Sepuluh Nopember Surbaya. , 9. DOI/URL?

Fernandes, A. A. R., Budiantara, I. N., Otok, B. W., & Suhartono. (2014). Reproducing kernel Hilbert space for penalized regression multi-predictors: case in longitudinal data. International Journal of Mathematical Analysis, 8,issue? 1951–1961. https://doi.org/10.12988/ijma.2014.47212

Fernandes, A. A. R., Budiantara, I. N., Otok, B. W., & Suhartono. (2015). Spline Estimator for Bi-Responses and Multi-Predictors Nonparametric Regression Model in Case of Longitudinal Data. Journal of Mathematics and Statistics, 11(2), 61–69. https://doi.org/10.3844/jmssp.2015.61.69

Fernandes, A. A. R., & Solimun. (2021). Analisis Regresi dalam Pendekatan Fleksibel. Universitas Brawijaya Press.

Firpha, R. M. P., & Achmad, A. I. (2022). Regresi Nonparametrik Spline Truncated untuk Pemodelan Persentase Penduduk Miskin di Jawa Barat Pada Tahun 2021. Bandung Conference Series: Statistics, 2(2), 454–458. https://doi.org/10.29313/bcss.v2i2.4720

Härdle, W. (1990). Applied nonparametric regression . Cambridge university press. DOI/URL?

Hidayat, M. F., Adji Achmad, R. F., & Solimun. (2018). Estimation of Truncated Spline Function in Non-parametric Path Analysis Based on Weighted Least Square (WLS). IOP Conference Series: Materials Science and Engineering, 546(5), 052027. https://doi.org/10.1088/1757-899X/546/5/052027

Iriany, A., & Fernandes, A. A. R. (2023). Hybrid Fourier series and smoothing spline path non-parametrics estimation model. Frontiers in Applied Mathematics and Statistics, 8. https://doi.org/10.3389/fams.2022.1045098

Krämer, A., Green, J., Pollard, J., & Tugendreich, S. (2014). Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 30(4), 523–530. https://doi.org/10.1093/bioinformatics/btt703

Rodliyah, I. (2016). Perbandingan Metode Bootstrap Dan Jackknife Dalam Mengestimasi Parameter Regresi Linier Berganda. JMPM: Jurnal Matematika dan Pendidikan Matematika, 1(1), 76. https://doi.org/10.26594/jmpm.v1i1.516

Santos, P., & Mattos, E. (2018). Correcting the population of Brazilian municipalities using the Jackknife model *. DOI/URL?

Solimun. (2010). Analisis Multivariat Pemodelan Struktural. CV Citra Malang. DOI/URL?

Solimun, S., Fernandes, A. A. R., Rahmawati, I., Muflikhah, L., Ubaidillah, F., & Rohimi, A. Al. (2021). Research on Structural Flexibility and Acceptance Model (SFAM) Reconstruction Based on Disruption Innovation in the Social Humanities and Education Sector. WSEAS TRANSACTIONS ON MATHEMATICS, 20, 657–675. https://doi.org/10.37394/23206.2021.20.70

Prahutama, A. (2013). Prosiding Seminar Nasional Statistika Model Regresi Nonparametrik Dengan Pendekatan Deret Fourier Pada Kasus Tingkat Pengangguran Terbuka Di Jawa Timur. Prosiding Seminar Nasional Statistika UNDIP, 69–76.

Ubaidillah, F., Fernandes, A. A. R., Iriany, A., Wardhani, N. W. S., & Solimun. (2022). Truncated Spline Path Analysis Modeling on in Company X with the Governments Role as a Mediation Variable. Journal of Statistics Applications & Probability, 11(3), 781–794. https://doi.org/10.18576/jsap/110303

Wu, H., & Zhang, J. T. (2006). Nonparametric regression methods for longitudinal data analysis: mixed-effects modeling approaches. John Wiley & Sons. DOI/URL?




DOI: https://doi.org/10.31764/jtam.v9i1.26739

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Laila Nur Azizah, Usriatur Rohma, Adji Achmad Rinaldo Fernandes, Ni Wayan Surya Wardhani, Suci Astutik

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: