Enhancing Weather Forecasting in Bandar Lampung: A Hybrid SARIMA-LSTM Approach

Dian Kurniasari, Anindya Dafa Salsabila, Mustofa Usman, Warsono Warsono

Abstract


Indonesia’s tropical climate, marked by rainy and dry seasons, is increasingly affected by extreme weather events driven by climate change. Rising temperatures, shifting rainfall patterns, and sea-level rise have intensified health risks such as malaria, dengue hemorrhagic fever (DHF), and gastrointestinal infections. Accurate weather forecasting is essential for mitigating these challenges and informing risk management strategies. This study develops and evaluates a hybrid SARIMA-LSTM model for weather forecasting in Bandar Lampung, integrating time series analysis with deep learning to enhance predictive accuracy. SARIMA captures seasonal variations, while LSTM models nonlinear relationships, offering a robust approach to forecasting complex weather patterns. The SARIMA (6,1,0)(3,1,0)26 model was selected for its effective seasonal representation and combined with LSTM to leverage its capability in modelling nonlinear dependencies. Hyperparameter optimization using grid search further improved model performance. Two data partitioning approaches were tested: 70%-30% and 80%-20% splits for training and testing, respectively. The SARIMA-LSTM hybrid model demonstrated superior performance with the 80%-20% split, achieving MSE, RMSE, and MAPE values of 0.1174, 0.3426, and 0.0104%, respectively. The model accurately forecasted weather conditions over 21 weeks, aligning closely with observed trends and effectively capturing seasonal patterns. These findings underscore the model’s potential to support public health strategies, including disease outbreak mitigation for malaria and DHF, and enhance disaster preparedness in flood-prone areas.


Keywords


Deep learning; Forecasting; Hybrid SARIMA-LSTM; LSTM; SARIMA; Weather.

Full Text:

DOWNLOAD [PDF]

References


Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. In Environmental Science and Pollution Research (Vol. 29, Issue 28, pp. 42539–42559). https://doi.org/10.1007/s11356-022-19718-6

Ahmed, T., Zounemat-Kermani, M., & Scholz, M. (2020). Climate change, water quality and water-related challenges: A review with focus on Pakistan. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 22, pp. 1–22). https://doi.org/10.3390/ijerph17228518

Ainurrohmah, S., & Sudarti, S. (2022). Analisis Perubahan Iklim dan Global Warming yang Terjadi sebagai Fase Kritis. Jurnal Phi Jurnal Pendidikan Fisika Dan Fisika Terapan, 3(3), 1. https://doi.org/10.22373/p-jpft.v3i3.13359

Amougou, J. A., Ngongo, I. S., Mbomba, P. F., Batha, R. A. S., & Bimbar, P. G. P. (2024). Cameroon Climate Predictions Using the SARIMA-LSTM Machine Learning Model: Adjustment of a Climate Model for the Sudano-Sahelian Zone of Cameroon. Open Journal of Statistics, 14(03), 394–411. https://doi.org/10.4236/ojs.2024.143016

Badan Pusat Statistik. (2023). Banyaknya Kasus DBD, Diare, dan Malaria, 2023. BPS.

Belete, D. M., & Huchaiah, M. D. (2022). Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. International Journal of Computers and Applications, 44(9), 875–886. https://doi.org/10.1080/1206212X.2021.1974663

Chen, P., Niu, A., Liu, D., Jiang, W., & Ma, B. (2018). Time Series Forecasting of Temperatures using SARIMA: An Example from Nanjing. IOP Conference Series: Materials Science and Engineering, 394(5). https://doi.org/10.1088/1757-899X/394/5/052024

Ensafi, Y., Amin, S. H., Zhang, G., & Shah, B. (2022). Time-series forecasting of seasonal items sales using machine learning – A comparative analysis. International Journal of Information Management Data Insights, 2(1). https://doi.org/10.1016/j.jjimei.2022.100058

Farhah, A., Prasasti, A. L., & Paryasto, M. W. (2021). Implementasi Recurrent Neural Network dalam Memprediksi Kepadatan Restoran Berbasis LSTM. Jurnal Media Informatika Budidarma, 5(2), 524. https://doi.org/10.30865/mib.v5i2.2916

Fatmawati, F., & Sulistyawati, S. (2019). Climate Change and Dengue in Indonesia: a Systematic Review. Epidemiology and Society Health Review (ESHR), 1(1), 29. https://doi.org/10.26555/eshr.v1i1.938

George, S. C. G., & Sumathi, B. (2020). Grid search tuning of hyperparameters in random forest classifier for customer feedback sentiment prediction. International Journal of Advanced Computer Science and Applications, 11(9), 173–178. https://doi.org/10.14569/IJACSA.2020.0110920

Kaseya, J., Dereje, N., Tajudeen, R., Ngongo, A. N., Ndembi, N., & Fallah, M. P. (2024). Climate change and malaria, dengue and cholera outbreaks in Africa: a call for concerted actions. In BMJ Global Health (Vol. 9, Issue 3). https://doi.org/10.1136/bmjgh-2024-015370

Khattab, A. A. R., Elshennawy, N. M., & Fahmy, M. (2023). GMA: Gap Imputing Algorithm for time series missing values. Journal of Electrical Systems and Information Technology, 10(1). https://doi.org/10.1186/s43067-023-00094-1

Kulkarni, M. A., Duguay, C., & Ost, K. (2022). Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: a scoping review of reviews. Globalization and Health, 18(1). https://doi.org/10.1186/s12992-021-00793-2

Kumar, N., & Jha, G. K. (2013). Time Series ANN Approach for Weather Forecasting. International Journal of Control Theory and Computer Modeling, 3(1), 19–25. https://doi.org/10.5121/ijctcm.2013.3102

Kumari, S., & Muthulakshmi, P. (2024). SARIMA Model: An Efficient Machine Learning Technique for Weather Forecasting. Procedia Computer Science, 235, 656–670. https://doi.org/10.1016/j.procs.2024.04.064

Kurniadi, Y. U., Subagia, D., Hakim, F. A., Nugraha, B. A., Hidayat, R., & Maarif, S. (2020). Peran Pangkalan Udara Pangeran M. Bun Yamin Bandar Lampung dalam penanggulangan bencana guna mendukung keamanan nasional. Nusantara: Jurnal Ilmu Pengetahuan Sosial, 7(2), 408–420. http://jurnal.um-tapsel.ac.id/index.php/nusantara/article/view/1978%0Ahttp://jurnal.um-tapsel.ac.id/index.php/nusantara/article/download/1978/1074

Larose, D. T., & Larose, C. D. (2014). Discovering Knowledge in Data: An Introduction to Data Mining: Second Edition. In Discovering Knowledge in Data: An Introduction to Data Mining: Second Edition (Vol. 9780470908). https://doi.org/10.1002/9781118874059

Lattifia, T., Wira Buana, P., & Rusjayanthi, N. K. D. (2022). Model Prediksi Cuaca Menggunakan Metode LSTM. JITTER Jurnal Ilmiah Teknologi Dan Komputer, 3(1), 994–1000.

Li, G., & Yang, N. (2023). A Hybrid SARIMA-LSTM Model for Air Temperature Forecasting. Advanced Theory and Simulations, 6(2). https://doi.org/10.1002/adts.202200502

Liao, W., Bak-Jensen, B., Pillai, J. R., Yang, D., & Wang, Y. (2022). Data-driven Missing Data Imputation for Wind Farms Using Context Encoder. Journal of Modern Power Systems and Clean Energy, 10(4), 964–976. https://doi.org/10.35833/MPCE.2020.000894

Lipczynska-Kochany, E. (2018). Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: A review. In Science of the Total Environment (Vols. 640–641, pp. 1548–1565). https://doi.org/10.1016/j.scitotenv.2018.05.376

Makridakis, S., Wheelwright S.C, M. V. (2017). Metode dan Aplikasi Peramalan. Edisi Kedua Jilid Satu. Jakarta: Erlangga, 6(1), 48–58. http://journal.unnes.ac.id/sju/index.php/ujm

Meisenbacher, S., Turowski, M., Phipps, K., Rätz, M., Müller, D., Hagenmeyer, V., & Mikut, R. (2022). Review of automated time series forecasting pipelines. In Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery (Vol. 12, Issue 6). https://doi.org/10.1002/widm.1475

Michel, D., Eriksson, M., & Klimes, M. (2021). Climate change and (in)security in transboundary river basins. In Handbook of Security and the Environment (pp. 62–75). https://doi.org/10.4337/9781789900668.00012

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2012). Introduction to Time Series Analysis and Forecasting. https://doi.org/10.1002/9781119945710.scard

Mung, P. S., & Phyu, S. (2023). Time Series Weather Data Forecasting Using Deep Learning. IEEE International Conference on Control and Automation, ICCA, 2023-Febru, 254–259. https://doi.org/10.1109/ICCA51723.2023.10182058

Murshed, M., & Dao, N. T. T. (2022). Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal, 87(2), 535–563. https://doi.org/10.1007/s10708-020-10270-9

Ni, L., Wang, D., Singh, V. P., Wu, J., Wang, Y., Tao, Y., & Zhang, J. (2020). Streamflow and rainfall forecasting by two long short-term memory-based models. Journal of Hydrology, 583. https://doi.org/10.1016/j.jhydrol.2019.124296

Nurfadila, K., & Ilham Aksan. (2020). Aplikasi Metode Arima Box-Jenkins Untuk Meramalkan Penggunaan Harian Data Seluler. Journal of Mathematics: Theory and Applications, 2(1), 5–10. https://doi.org/10.31605/jomta.v2i1.749

Nurhopipah, A., & Hasanah, U. (2020). Dataset Splitting Techniques Comparison For Face Classification on CCTV Images. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 14(4), 341. https://doi.org/10.22146/ijccs.58092

Nurpambudi, R., & Aziz, R. A. (2023). Prediksi Kejadian Banjir Di Wilayah Kota Bandar Lampung Dengan Metode Artificial Neural Network. Proseding Seminar Nasional Hasil Penelitian Dan Pengabdian, 93–104.

Petrusevich, D. A. (2021). Review of missing values procession methods in time series data. Journal of Physics: Conference Series, 1889(3). https://doi.org/10.1088/1742-6596/1889/3/032009

Rizki, M., Basuki, S., & Azhar, Y. (2020). Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory(LSTM) Untuk Prediksi Curah Hujan Kota Malang. Jurnal Repositor, 2(3), 331–338. https://doi.org/10.22219/repositor.v2i3.470

Rizki, M. I., & Taqiyyuddin, T. A. (2021). Penerapan Model SARIMA untuk Memprediksi Tingkat Inflasi di Indonesia. Jurnal Sains Matematika Dan Statistika, 7(2). https://doi.org/10.24014/jsms.v7i2.13168

Rocque, R. J., Beaudoin, C., Ndjaboue, R., Cameron, L., Poirier-Bergeron, L., Poulin-Rheault, R. A., Fallon, C., Tricco, A. C., & Witteman, H. O. (2021). Health effects of climate change: An overview of systematic reviews. BMJ Open, 11(6). https://doi.org/10.1136/bmjopen-2020-046333

Rowan, Muflikhah, L., & Cholissodin, I. (2022). Peramalan Kasus Positif COVID-19 di Jawa Timur menggunakan Metode Hybrid ARIMA-LSTM. In Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (Vol. 6, Issue 9). http://j-ptiik.ub.ac.id

Sandhya Arora, Milind Kolambe. (2024). Forecasting the Future: A Comprehensive Review of Time Series Prediction Techniques. Journal of Electrical Systems, 20(2s), 575–586. https://doi.org/10.52783/jes.1478

Sirisha, U. M., Belavagi, M. C., & Attigeri, G. (2022). Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison. IEEE Access, 10. https://doi.org/10.1109/ACCESS.2022.3224938

Sun, Q., Wan, J., & Liu, S. (2020). Estimation of Sea Level Variability in the China Sea and Its Vicinity Using the SARIMA and LSTM Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3317–3326. https://doi.org/10.1109/JSTARS.2020.2997817

Wei, W. W. S. (2006). Time Series Analysis: Univariate and Multivariate Methods Second Edition. In Pearson Education, Inc (pp. 203–220).

Wiranda, L., & Sadikin, M. (2019). Penerapan Long Short Term Memory pada Data Time Series untuk Memprediksi Penjualan Produk PT. Metiska Farma. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 8(3).

Wu, D. C. W., Ji, L., He, K., & Tso, K. F. G. (2021). Forecasting Tourist Daily Arrivals With A Hybrid Sarima–Lstm Approach. Journal of Hospitality and Tourism Research, 45(1), 52–67. https://doi.org/10.1177/1096348020934046

Wu, Y., Meng, X., Zhang, J., He, Y., Romo, J. A., Dong, Y., & Lu, D. (2024). Effective LSTMs with seasonal-trend decomposition and adaptive learning and niching-based backtracking search algorithm for time series forecasting. Expert Systems with Applications, 236. https://doi.org/10.1016/j.eswa.2023.121202

Yadav, A., Jha, C. K., & Sharan, A. (2020). Optimizing LSTM for time series prediction in Indian stock market. Procedia Computer Science, 167, 2091–2100. https://doi.org/10.1016/j.procs.2020.03.257

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415. https://doi.org/10.1016/j.neucom.2020.07.061

Zhang, P. G. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0

Zhao, Z., Zhai, M., Li, G., Gao, X., Song, W., Wang, X., Ren, H., Cui, Y., Qiao, Y., Ren, J., Chen, L., & Qiu, L. (2023). Study on the prediction effect of a combined model of SARIMA and LSTM based on SSA for influenza in Shanxi Province, China. BMC Infectious Diseases, 23(1). https://doi.org/10.1186/s12879-023-08025-1




DOI: https://doi.org/10.31764/jtam.v9i1.27188

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Dian Kurniasari, Anindya Dafa Salsabila, Mustofa Usman, Warsono

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: