Trace of the Positive Integer Powers (n-1)-Tridiagonal Toeplitz Matrix n×n

Fitri Aryani, Fitri Ambar Wati, Corry Corazon Marzuki, Zukrianto Zukrianto

Abstract


The trace of a matrix is obtained by summing the elements along the main diagonal of a square matrix. The matrix used in this study is a Toeplitz (n-1)-tridiagonal matrix of order n×n. The aim of this research is to determine the general form or formula for the trace of a Toeplitz (n-1)-tridiagonal matrix of order n×n raised to a positive integer power. This research is quantitative, with the research instrument being the collection of data from the multiplication of Toeplitz (n-1)-tridiagonal matrices starting from order 3×3 from powers 2 through 10. This process continues up to order 6×6 from powers 2 through 10, until the pattern becomes apparent. The results of the research are two general forms of the powers of the Toeplitz (n-1)-tridiagonal matrix of order n×n: one for odd positive integer powers and another for even positive integer powers, both of which have been proven using mathematical induction. Furthermore, by using the definition of the trace of a matrix obtained two general forms for the trace of the Toeplitz (n-1)-tridiagonal matrix of order n×n are also derived: one for odd positive integer powers and another for even positive integer powers from the general form of the matrix power. Given the application of these two general forms in example problems with the order 8x8 for powers 12 and 21.


Keywords


Mathematical Induction; (n-1)-Tridiagonal; Toeplitz Matrix; Trace.

Full Text:

DOWNLOAD [PDF]

References


Anđelić, M., & da Fonseca, C. M. (2019). Some comments on tridiagonal (p,r)-Toeplitz matrices. Linear Algebra and Its Applications, 572, 46–50. https://doi.org/10.1016/j.laa.2019.03.001

Andriani, P. (2012). Penalaran Aljabar Dalam Pembelajaran Matematika. Jurnal Beta, 5(2), 124–148.

Anton, H., & Rorres, C. (2004). Aljabar Linier Elementer Versi Aplikasi (Amalia Safitri S.TP. M.Si (ed.); 8th ed.). Erlangga.

Aryani, F., & Husna, N. (2019). Trace Matriks Toeplitz Tridiagonal 3x3 Bilangan Bulat Positif Berpangkat. Jurnal Sains Matematika Dan Statistika, 5(1), 40–49. https://doi.org/10.24014/jsms.v4i1.7397.

Aryani, F., Marzuki, C. C., & Basriati, S. (2023). Trace of the Adjacency Matrix n x n of the Cycle Graph To the Power of Six To Ten. International Journal of Mathematics and Computer Research, 11(07), 3526–3534. https://doi.org/10.47191/ijmcr/v11i7.04

Aryani, F., Rahmawita, M., Megawati, & Sarbaini. (2023). The Formula of the Trace of Triangle n×n Matrix to the Power of Positive Integer. European Journal of Mathematics and Statistics, 4(4), 24–37. https://doi.org/10.24018/ejmath.2023.4.4.248

Aryani, F., Ramadhani, E. S., Muda, Y., & Marzuki, C. C. (2022). Trace Matriks Toeplitz Heptadiagonal Simetris Berpangkat Bilangan Bulat Positif. Jurnal Fourier, 11(1), 40–48. https://doi.org/10.14421/fourier.2022.111.40-48

Drs. Sukirman M.Pd. (2006). Pengantar Teori Bilangan (Adhi Publisher (ed.); 1st ed.). Hanggar Kreator.

El-mikkawy, M., & Karawia, A. (2006). Inversion of general tridiagonal matrices. Applied Mathematics Letters, 19, 712–720. https://doi.org/10.1016/j.aml.2005.11.012

Fitri Aryani, Rio Andesta, & Marzuki, C. C. (2020). Trace Matriks Berbentuk Khusus 3x3 Berpangkat Bilangan Bulat Positif. Jurnal Sains Matematika Dan Statistika, 2(2), 40–49. https://doi.org/10.32734/st.v2i2.472

Hadi, M. A. (2020). Trace Matriks Toeplitz-Hessenberg Berpangkat Bilangan Bulat Positif Empat (Vol. 2, Issue 1). Universitas Islam Negeri Sultan Syarif Kasim Riau.

Munir, R. (2016). Matematika Diskrit (5th ed.). Informatika Bandung. ISBN/ISSN. 978-602-8758-78-9.

Olii, I. R., Resmawan, & Yahya, L. (2021). Trace Matriks Toeplitz 2-Tridiagonal 3×3 Berpangkat Bilangan Bulat Positif. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 15(3), 441–452. https://doi.org/10.30598/barekengvol15iss3pp441-452

Rahmawati, Putri, N. A., Aryani, F., & Rahma, A. N. (2019). Trace Matriks Toeplitz Simetris Bentuk Khusus Ordo 3×3 Berpangkat Bilangan Bulat Positif. Jurnal Sains Matematika Dan Statistika, 5(2), 61–70. https://doi.org/10.24014/jsms.v5i2.7637.

Rahmawati, R., Citra, A., Aryani, F., Marzuki, C. C., & Muda, Y. (2021). Trace of Positive Integer Power of Squared Special Matrix. Cauchy: Jurnal Matematika Murni Dan Aplikasi, 6(4), 200–211. https://doi.org/10.18860/ca.v6i4.10312

Rahmawati, Wartono, & Jelita, M. (2019). Trace of Integer Power of Real 3 X 3 Specific Matrices. International Journal of Advances in Scientific Research and Engineering, 5(3), 48–56. https://doi.org/10.31695/ijasre.2019.33099

Rasmawati, Yahya, L., Nuha, A. R., & Resmawan. (2021). Determinan Suatu Matriks Toeplitz k-Tridiagonal Menggunakan Metode Reduksi Baris dan Ekspansi Kofaktor. Euler: Jurnal Ilmiah Matematika, Sains Dan Teknologi, 9(1), 6–16. https://doi.org/10.34312/euler.v9i1.10354.

Salkuyeh, D. K. (2006). Positive integer powers of the tridiagonal toeplitz matrices. International Mathematical Forum, 22, 1061–1065. https://doi.org/10.12988/imf.2006.06086

Sentot Kromodimoeljo. (2009). Teori dan Aplikasi Kriptografi. Penerbit: SPK IT Consulting °c 2009 SPK IT Consulting. ISBN 978-602-96233-0-7.

Widyastuti Andriyani, dkk. (2024). Matematika pada Kecerdasan Buatan. Penerbit: Tohar Media, Makasar, Indonesia




DOI: https://doi.org/10.31764/jtam.v9i1.27387

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Fitri Aryani, Fitri Ambar Wati, Corry Corazon Marzuki, Zukrianto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: