XportID: Website for Clustering Indonesian Export Commodities by Destination Continent using Gaussian Mixture Model
Abstract
Exports play a crucial role in driving economic growth and increasing foreign exchange reserves. However, Indonesia's export performance has not yet reached its optimal potential, as evidenced by an 11% decline in export value in 2023. The decrease is partly attributed to the limited range of export destination markets. Therefore, this study aims to analyze export trade patterns to identify the most ideal and potential market locations. The research will employ a quantitative approach, using secondary data from the Central Bureau of Statistics and the 2022 BACI dataset, focusing on the top 5 HS2 commodity types by highest export quantity. Clustering analysis is applied to group markets based on similar characteristics, identifying countries with high, medium, and low export potential for Indonesia’s export strategy. The research develops a website-based clustering system called XportID, utilizing a Gaussian Mixture Model (GMM) with the Expectation-Maximization (EM) algorithm to determine optimal cluster parameters. GMM is preferred for its flexibility and probabilistic system, providing more accurate results compared to distance-based methods. There will be 3, 4, and 5 clusters formed and then the best cluster will be selected by comparing the silhouette score obtained. Results show that the Asian continent has 5 clusters with the best value of 0.7035, the American continent has 3 clusters with the best value of 0.8165, the African continent has 3 clusters with the best value of 0.8534, the Australian continent has 3 clusters with the best value of 0.8540, and the European continent has 4 clusters with the best value of 0.8654. Overall results, the clustering system is categorized as strong structure with average value of 0.8185. Countries with high export potential include Malaysia, Philippines, South Korea, Brazil, Mexico, New Zealand, and Spain. Specifically in Africa, commodities related to HS2-15 show potential for growth.
Keywords
Full Text:
DOWNLOAD [PDF]References
Adiwidyatma, A. R., Diyasa, I. G. S. M., & Trimono. (2024). Analysis of Clustering Methods on the Causal Factors of Diabetes Mellitus with Fuzzy C Means Method. Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 5(2), 983–996. https://doi.org/10.46306/lb.v5i2
Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. In Electronics (Switzerland) (Vol. 9, Issue 8, pp. 1–12). MDPI AG. https://doi.org/10.3390/electronics9081295
Akhmad, E. P. A., & Priyono, B. (2024). Classification of Indonesian Frozen Shrimp Export Data Using K-Medoids Clustering. Technology, and Business (JETBIS), 3(5). https://doi.org/https://doi.org/10.57185/jetbis.v3i5.106
Andi Purnomo, M. R., Azzam, A., & Uswatun Khasanah, A. (2020). Effective Marketing Strategy Determination Based on Customers Clustering Using Machine Learning Technique. Journal of Physics: Conference Series, 1471(1). https://doi.org/10.1088/1742-6596/1471/1/012023
Andriyani, K., Marwa, T., Adnan, N., & Muizzuddin. (2020). The Determinants of Foreign Exchange Reserves: Evidence from Indonesia. The Journal of Asian Finance, Economics and Business, 7(11), 629–636. https://doi.org/10.13106/jafeb.2020.vol7.no11.629
Annisa Octaria, E., Maulani, D., & Daris Syafiq, M. (2023). Clustering Crumb Rubber Exports Based on Destination Countries Using the K-Means Method. Journal of International Trade, 2(2), 46–51. https://doi.org/10.32832/jit
Central Bureau of Statistics. (2023). Indonesian Foreign Trade Statistics Exports 2022, Volume II.
Central Bureau of Statistics. (2024). Indonesian Foreign Trade Statistics Exports 2023, Volume I.
Charles, G. E., & Rangen Jaya, M. H. (2023). Credit For Export Bow Penetration: Catalyzing A Breakthrough In The International Trade Sector. Journal of Sustainable Economics, 1(1), 24–28. https://doi.org/10.32734/jse.v1i1.12066
Dash, C. S. K., Behera, A. K., Dehuri, S., & Ghosh, A. (2023). An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal, 6. https://doi.org/10.1016/j.dajour.2023.100164
Faidah, D. Y., Hudzaifa, A. M., & Pontoh, R. S. (2024). Clustering of Childhood Diarrhea Diseases using Gaussian Mixture Model. Communications in Mathematical Biology and Neuroscience. https://doi.org/10.28919/cmbn/8365
Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.652801
Fernando, L., & Fianty, M. I. (2024). Optimizing Motorcycle Sales: Enhancing Customer Segmentation with K-Means Clustering and Data Mining Techniques. Journal of Information Systems and Informatics, 6(3), 1484–1498. https://doi.org/10.51519/journalisi.v6i3.799
Gaulier, G., & Zignago, S. (2010). BACI: International Trade Database at the Product-level The 1994-2007 Version. http://www.cepii.fr/anglaisgraph/bdd/baci.htm.
Hameed, W. M., & Ali, N. A. (2022). Comparison of Seventeen Missing Value Imputation Techniques. Journal of Hunan University Natural Sciences, 49(7), 26–36. https://doi.org/10.55463/issn.1674-2974.49.7.4
Islami, R. L., & Sihombing, P. R. (2021). Application Biplot and K-Medians Clustering to Group Export Destination Countries of Indonesia’s Product. Advance Sustainable Science, Engineering and Technology, 3(1). https://doi.org/10.26877/asset.v3i1.8451
Januzaj, Y., Beqiri, E., & Luma, A. (2023). Determining the Optimal Number of Clusters using Silhouette Score as a Data Mining Technique. International Journal of Online and Biomedical Engineering, 19(4), 174–182. https://doi.org/10.3991/ijoe.v19i04.37059
Ji, X., Dong, F., Zheng, C., & Bu, N. (2022). The Influences of International Trade on Sustainable Economic Growth: An Economic Policy Perspective. Sustainability (Switzerland), 14(5). https://doi.org/10.3390/su14052781
Matondang, K. A., Silalahi, H. H. B., Naibaho, H. S. D., Safitri, L., & Siregar, A. N. (2024). The Role of International Trade in Increasing The Rate of Economic Growth in Indonesia: A Literature Review. International Journal Of Education, Social Studies, And Management (IJESSM), 4(2), 278–290. https://doi.org/10.52121/ijessm.v4i2.238
Myagmarsuren, S. (2024). Exploring the Use of Silhouette Score in K-Means Clustering for Image Segmentation (Exploring the Use of Silhouette Score in K-Means Clustering for Image Segmentation). International Journal of Engineering Research & Technology (IJERT), 13(4). http://www.ijert.org
Patel, E., & Kushwaha, D. S. (2020). Clustering Cloud Workloads: K-Means vs Gaussian Mixture Model. Procedia Computer Science, 171, 158–167. https://doi.org/10.1016/j.procs.2020.04.017
Rahman, F., Ridho, I. I., Muflih, M., Pratama, S., Raharjo, M. R., & Windarto, A. P. (2020). Application of Data Mining Technique using K-Medoids in the case of Export of Crude Petroleum Materials to the Destination Country. IOP Conference Series: Materials Science and Engineering, 835(1). https://doi.org/10.1088/1757-899X/835/1/012058
Renaldi. S, S., Prasetya, D. A., & Muhaimin, A. (2024). Analisis Klaster Partitioning Around Medoids dengan Gower Distance untuk Rekomendasi Indekos (Studi Kasus: Indekos di Sekitar Kampus UPNVJT). G-Tech: Jurnal Teknologi Terapan, 8(3), 2060–2069. https://doi.org/10.33379/gtech.v8i3.4898
Sani Akbar, J., & Rezeki, N. S. (2021). Analysis of Economic Growth and Export Development of Bangka Belitung Islands. Business and Accounting Research (IJEBAR) , 5(4), 625–633.
Santoso, H. A., & Haw, S. C. (2023). Improvement of k-Means Clustering Performance on Disease Clustering using Gaussian Mixture Model. Journal of System and Management Sciences, 13(5), 169–179. https://doi.org/10.33168/JSMS.2023.0511
Sharma, V. (2022). A Study on Data Scaling Methods for Machine Learning. International Journal for Global Academic & Scientific Research, 1(1). https://doi.org/10.55938/ijgasr.v1i1.4
Solikhun, S., Yasin, V., & Donni Nasution. (2022). Optimization of the Number of Clusters of the K-Means Method in Grouping Egg Production Data in Indonesia. International Journal of Artificial Intelligence & Robotics (IJAIR), 4(1), 39–47. https://doi.org/10.25139/ijair.v4i1.4328
Syahrani, D., Sitorus, H. N. S., & Sitompul, R. S. M. (2022). The Influence of International Trade on Indonesia’s Economic Growth. International Journal of Business and Applied Economics, 1(1), 27–30. https://doi.org/10.55927/ijbae.v1i1.2147
Ulvi, H. A., & Ikhsan, M. (2024). Comparison of K-Means and K-Medoids Clustering Algorithms for Export and Import Grouping of Goods in Indonesia. Sinkron, 8(3), 1671–1685. https://doi.org/10.33395/sinkron.v8i3.13815
Yohansa, M., Notodiputro, K. A., & Erfiani, E. (2022). Dynamic Time Warping Techniques for Time Series Clustering of Covid-19 Cases in DKI Jakarta. ComTech: Computer, Mathematics and Engineering Applications, 13(2), 63–73. https://doi.org/10.21512/comtech.v13i2.7413
DOI: https://doi.org/10.31764/jtam.v9i1.27500
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Angela Lisanthoni, Trimono, Dwi Arman Prasetya
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: