A Comparative Analysis of First-Difference GMM and System GMM Approaches on Economic Growth
Abstract
One of the critical causes of Indonesia's economic growth is the presence of the Covid-19 Pandemic which has resulted in a decline in public consumption and investment interest at the household level in each region. One of the areas with a decrease in the number of affected tourist visits is Bali Province. This is because Bali is an icon of Indonesia and is the best tourist destination. The purpose of this study is to obtain the most suitable model to model economic growth with the FD-GMM and Sys-GMM approach meeting the criteria of validity, consistency, and unbiased. This type of research is quantitative research with data sourced from the central statistical agency of Bali Province. The method used in this study is to compare the First-Difference Generalized Method of Moment (FD-GMM) and System Generalized Method of Moment (Sys-GMM) on economic growth data in Bali Province. The result of this study is the estimation of model parameters with the approach FD- GMM meets valid, consistent, and unbiased criteria. In contrast, the estimation of model parameters with the Sys-GMM meets validity and consistency criteria. However, the unbiased criteria are not met because the resulting model has a biased coefficient. The best model used to model Bali's economic growth data is the FD-GMM model. The above results imply that the existence of the population categorized as poor and the existence of the workforce are still a special concern. So, the suggestion in this study is that it is necessary to conduct a policy analysis from the Bali Provincial Government in dealing with poverty rates. Furthermore, employment management in Bali will be reorganized to be more directed and measurable in increasing the economic growth of Bali Province.
Keywords
Full Text:
DOWNLOAD [PDF]References
Alam S. (2006). Ekonomi untuk SMA dan MA Kelas XI. ESIS.
Antara, M., & Sumarniasih, M. S. (2024). Structure Analysis and Growth Trends the Economy of Bali Province-Indonesia Post COVID-19 Pandemic. Asian Journal of Agricultural Extension, Economics & Sociology, 42(5), 82–98. https://doi.org/10.9734/ajaees/2024/v42i52416
Apriliansah, L. (2024). Analisis Pengaruh Investasi Terhadap Pertumbuhan Ekonomi. JICN: Jurnal Intelek Dan Cendikiawan Nusantara, 1(2), 2401–2413. https://jicnusantara.com/index.php/jicn/article/view/272
Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2), 277–297. https://doi.org/10.2307/2297968
Atmojo, M. E., & Fridayani, H. D. (2021). An Assessment of Covid-19 Pandemic Impact on Indonesian Tourism Sector. Journal of Governance and Public Policy, 8(1), 1–9. https://doi.org/10.18196/jgpp.811338
Badan Pusat Statistik Provinsi Bali. (n.d.-a). Retrieved July 24, 2024, from https://bali.bps.go.id/subject/26/indeks-pembangunan-manusia.html#subjekViewTab1
Badan Pusat Statistik Provinsi Bali. (n.d.-b). Retrieved July 24, 2024, from https://bali.bps.go.id/subject/23/kemiskinan-dan-ketimpangan.html#subjekViewTab1
Baltagi, B. H. (2021). Econometric Analysis of Panel Data. Springer International Publishing. https://doi.org/10.1007/978-3-030-53953-5
Dendo, M., & Suryowati, K. (2021). Pemodelan Tingkat Inflasi Di Indonesia Menggunakan Regresi Data Panel Dinamsi Dengan Estimasi Fd-Gmm Arellano-Bond Dan Sys-Gmm Blundell-Bond. Jurnal Statistika Industri Dan Komputasi, 6(2), 159–170.
Firdaus, M. (2020). Aplikasi Ekonometrika dalam E-views, Stata, dan R. PT. Penerbit IPB Press.
Gunawan, A., Triansyah, F. A., Karlina, R., Yusuf, G., Dinantika, A. R., & Wahyudi, A. (2023). Econometric Model of Economic Growth In Indonesia Using Dynamic Panel Data Using the FD-GMM Arellano-Bond and SYS-GMM Blundell-Bond Approaches. Kontigensi : Jurnal Ilmiah Manajemen, 11(1), 208–213. https://doi.org/10.56457/jimk.v11i1.344
Khan, M. A. (2008). Financial Development and Economic Growth in Pakistan: Evidence Based on Autoregressive Distributed Lag (ARDL) Approach. South Asia Economic Journal, 9(2), 375–391. https://doi.org/10.1177/139156140800900206
Nabilah, D., & Setiawan, S. (2016). Pemodelan Pertumbuhan Ekonomi Indonesia Menggunakan Data Panel Dinamis dengan Pendekatan Generalized Method of Moment Arellano-Bond. Jurnal Sains Dan Seni ITS, 5(2). http://ejurnal.its.ac.id/index.php/sains_seni/article/view/16545
Purnomo, S. D., Wani, N., Suharno, Arintoko, Sambodo, H., & Badriah, L. S. (2023). The Effect of Energy Consumption and Renewable Energy on Economic Growth in Indonesia. International Journal of Energy Economics and Policy, 13(1), 22–30. https://doi.org/10.32479/ijeep.13684
Richard, M. (2022). GMM Analyses of the Effects of Digital Services Trade on Economic Growth of Low, Middle and High Income Countries. Asian Journal of Economics, Business and Accounting, 22(18), 1–22. https://doi.org/10.9734/ajeba/2022/v22i1830643
Satoto, E. B. (2023). Boosting Homeownership Affordability for Low-Income Communities in Indonesia. International Journal of Sustainable Development and Planning, 18(5), 1365–1376. https://doi.org/10.18280/ijsdp.180506
Sherly Helma Putri, & Helma. (2023). Factors Affecting Economic Growth in West Sumatera Province Using Panel Data Regression Analysis. Mathematical Journal of Modelling and Forecasting, 1(2), 44–53. https://doi.org/10.24036/mjmf.v1i2.17
Siddiqui, D. A., & Ahmed, Q. M. (2013). The Effect of Institutions on Economic Growth: A Global Analysis Based on GMM Dynamic Panel Estimation. Structural Change and Economic Dynamics, 24(1), 18–33. https://doi.org/10.1016/j.strueco.2012.12.001
Soraya, S., Herawati, B. C., & Negara, H. R. P. (2021). Economic Growth Modelling in West Nusa Tenggara Using Bayesian Spatial Model Approach. JTAM (Jurnal Teori Dan Aplikasi Matematika), 5(1), 80–87. https://doi.org/10.31764/jtam.v5i1.3357
Surwandono, & Yanuar, M. D. (2021). The risk of mainstreaming economic growth and tourism on preventing Covid-19 in Indonesia. Sociologia y Tecnociencia, 11(2), 94–114. https://doi.org/10.24197/st.2.2021.94-114
Tamrin, W., Iskandar, R., & Effendi, A. S. (2022). Factors Affecting Economic Growth and Poverty Rate in Kutai Timur District. International Journal of Science and Society, 4(1), 170–186.
Technica, G. (2016). Spatial Variaton of No2 Levels During the Covid-19 Pandemic in The Bali Tourism Area. 11(2), 39–50. https://doi.org/10.21163/GT
Wau, T., Sarah, U. M., Pritanti, D., Ramadhani, Y., & Ikhsan, M. S. (2022). Determinan Pertumbuhan Ekonomi Negara ASEAN: Model Data Panel. Jurnal Samudra Ekonomi Dan Bisnis, 13(2), 163–176. https://doi.org/10.33059/jseb.v13i2.5205
Wicaksono, M. E., Di Asih, I. M., & Utami, I. T. (2023). Model Regresi Data Panel Dinamis Dengan Estimasi Parameter Arellano-Bond Pada Pertumbuhan Ekonomi Di Indonesia. Jurnal Gaussian, 12(2), 266–275. https://doi.org/10.14710/j.gauss.12.2.266-275
Wicaksono, M. E., Maruddani, D. A. I., & Utami, I. T. (2023). Model Regresi Data Panel Dinamis Dengan Estimasi Parameter Arellano-Bond Pada Pertumbuhan Ekonomi Di Indonesia. Jurnal Gaussian, 12(2), 266–275. https://doi.org/10.14710/j.gauss.12.2.266-275
Wijaya, W. A. W. R. I. (2024). Analisis Rasio Pertumbuhan Ekonomi. Cv. Azka Pustaka.
DOI: https://doi.org/10.31764/jtam.v9i1.27620
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ni Putu Nanik Hendayanti, Maulida Nurhidayati, Siti Soraya, Suliadi Firdaus Sufahani, Muhaimin Ismoen

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: