A Posteriori Premium Rate Calculation using Poisson-Gamma Hierarchical Generalized Linear Model for Vehicle Insurance

Fevi Novkaniza, Irene Devina Putri, Rahmat Al Kafi, Sindy Devila

Abstract


This study develops and applies the Poisson-Gamma Hierarchical Generalized Linear Model (PGHGLM) to address the challenge of determining accurate and fair premium rates in vehicle insurance. The PGHGLM models a mixture distribution for the response variable, influenced by random effects, and employs a logarithmic link function. Parameter estimation is conducted using the maximum likelihood method. However, since analytical estimation is not feasible, the numerical conjugate gradient method, specifically the Fletcher-Reeves algorithm, is utilized. The implementation of the PGHGLM uses the longitudinal Claimslong dataset, incorporating driver age as a covariate. The main contribution of this research lies in integrating a priori risk classification with a posteriori adjustment based on longitudinal claim frequency data. For datasets without covariates, trend parameters are incorporated into the model. For datasets with covariates, such as driver age, the average claim frequency is computed for each age category. Results show that posteriori premium rates increase with rising claim frequency from the previous year, with higher claim frequencies leading to larger rate adjustments in the subsequent year. Through the PGHGLM, a posteriori premium rate estimates are obtained for each age group of vehicle insurance policyholders. This study demonstrates the practical application of the PGHGLM in calculating precise premium rates. By analyzing a longitudinal vehicle insurance dataset, the model generates annual a posteriori premium rates tailored to age groups. These findings underscore the PGHGLM’s robust methodological framework and its potential to enhance premium fairness, enable risk-adjusted pricing, and better tailor insurance products to diverse policyholder profiles.

 


Keywords


Claim Frequency; Conjugate Gradient; Longitudinal Data; Maximum Likelihood; Random effects.

Full Text:

DOWNLOAD [PDF]

References


Antonio, K., & Beirlant, J. (2005). Actuarial Statistics With Generalized Linear Mixed Models. Insurance: Mathematics and Economics, 40, 58–76. https://doi.org/10.1016/j.insmatheco.2006.02.013

Antonio, K., & Valdez, E. A. (2012). Statistical concepts of a priori and a posteriori risk classification in insurance. AStA Advances in Statistical Analysis, 96(2), 187–224. https://doi.org/10.1007/s10182-011-0152-7

Bagariang, E., & Raharjanti, A. (2023a). Calculation of Motor Vehicle Insurance Premiums Through Evaluation of Claim Frequency and Amount Data. Operations Research: International Conference Series, 4, 157–162. https://doi.org/10.47194/orics.v4i4.270

Boonen, T. J., & Liu, F. (2022). Insurance with heterogeneous preferences. Journal of Mathematical Economics, 102, 102742. https://doi.org/https://doi.org/10.1016/j.jmateco.2022.102742

Boucher, J.-P., & Denuit, M. (2006). Fixed versus Random Effects in Poisson Regression Models for Claim Counts: A Case Study with Motor Insurance. ASTIN Bulletin, 36(1), 285–301. https://doi.org/DOI: 10.2143/AST.36.1.2014153

Boucher, J.-P., & Inoussa, R. (2014). A posteriori ratemaking with panel data. ASTIN Bulletin, 44, 587–612. https://doi.org/10.1017/asb.2014.11

Brown, R. L., & Lennox, W. S. (2015). Introduction to Ratemaking and Loss Reserving for Property and Casualty Insurance. ACTEX Publications.

Dickson, D. C., Hardy, M. R., & Waters, H. R. (2009). Actuarial Mathematics for Life Contingent Risks. Cambridge University Press.

Frostig, E. (2001). A comparison between homogeneous and heterogeneous portfolios. Insurance: Mathematics and Economics, 29, 59–71. https://doi.org/10.1016/S0167-6687(01)00073-7

Frostig, E., Zaks, Y., & Levikson, B. (2007a). Optimal pricing for a heterogeneous portfolio for a given risk factor and convex distance measure. Insurance: Mathematics and Economics, 40(3), 459–467. https://doi.org/https://doi.org/10.1016/j.insmatheco.2006.07.001

Gning, L., Diagne, M., & Tchuenche, M. (2023). Hierarchical generalized linear models, correlation and a posteriori ratemaking. Physica A: Statistical Mechanics and Its Applications, 614, 128534. https://doi.org/10.1016/j.physa.2023.128534

Gupta, P., Gupta, R., & Ong, S.-H. (2004). Modelling Count Data by Random Effect Poisson Model. Sankhyā: The Indian Journal of Statistics (2003-2007), 66, 548–565. https://doi.org/10.2307/25053380

Hsu, Y.-C., Chou, P.-L., & Shiu, Y.-M. (2016a). An examination of the relationship between vehicle insurance purchase and the frequency of accidents. Asia Pacific Management Review, 21(4), 231–238. https://doi.org/https://doi.org/10.1016/j.apmrv.2016.08.001

Iqbal, A., Shad, M. Y., & Yassen, M. F. (2023). Empirical E-Bayesian estimation of hierarchical poisson and gamma model using scaled squared error loss function. Alexandria Engineering Journal, 69, 289–301. https://doi.org/https://doi.org/10.1016/j.aej.2023.01.064

Jin, S., & Lee, Y. (2024). Standard error estimates in hierarchical generalized linear models. Computational Statistics & Data Analysis, 189, 107852. https://doi.org/https://doi.org/10.1016/j.csda.2023.107852

Laird, N. M., & Ware, J. H. (1982). Random-Effects Models for Longitudinal Data. Biometrics, 38(4), 963–974. https://doi.org/10.2307/2529876

Lanfranchi, D., & Grassi, L. (2022a). Examining insurance companies’ use of technology for innovation. The Geneva Papers on Risk and Insurance - Issues and Practice, 47(3), 520–537. https://doi.org/10.1057/s41288-021-00258-y

Lee, W., Kim, J., & Ahn, J. Y. (2020a). The Poisson random effect model for experience ratemaking: Limitations and alternative solutions. Insurance: Mathematics and Economics, 91, 26–36. https://doi.org/https://doi.org/10.1016/j.insmatheco.2019.12.004

Lee, W., Kim, J., & Ahn, J. Y. (2020b). The Poisson random effect model for experience ratemaking: Limitations and alternative solutions. Insurance: Mathematics and Economics, 91, 26–36. https://doi.org/https://doi.org/10.1016/j.insmatheco.2019.12.004

Levitas, J., Yavilberg, K., Korol, O., & Man, G. (2022). Prediction of Auto Insurance Risk Based on t-SNE Dimensionality Reduction. Adv. Artif. Intell. Mach. Learn., 2, 567–579. https://api.semanticscholar.org/CorpusID:254854018

Li, S., Dyk, D., & Autenrieth, M. (2024). Poisson and Gamma Model Marginalisation and Marginal Likelihood calculation using Moment-generating Functions. https://doi.org/10.48550/arXiv.2409.11167

Matsuyama, Y. (2020). Hierarchical Linear Modeling (HLM). In M. D. Gellman (Ed.), Encyclopedia of Behavioral Medicine (pp. 1059–1061). Springer International Publishing. https://doi.org/10.1007/978-3-030-39903-0_407

Niehaus, G. (2016). The Role of Insurance in Enterprise Risk Management (pp. 161–173). https://doi.org/10.1016/B978-0-12-800633-7.00012-2

Rejda, G. E. , M. M. J. . (2017). Principles of Risk Management and Insurance (13th ed.). Pearson Education Ltd.

Rumson, A. G., & Hallett, S. H. (2019a). Innovations in the use of data facilitating insurance as a resilience mechanism for coastal flood risk. Science of The Total Environment, 661, 598–612. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.01.114

Sheehan, B., Mullins, M., Shannon, D., & McCullagh, O. (2023a). On the benefits of insurance and disaster risk management integration for improved climate-related natural catastrophe resilience. Environment Systems and Decisions, 43(4), 639–648. https://doi.org/10.1007/s10669-023-09929-8

Shirazi, M., & Lord, D. (2019). Characteristics-based heuristics to select a logical distribution between the Poisson-gamma and the Poisson-lognormal for crash data modelling. Transportmetrica A: Transport Science, 15(2), 1791–1803. https://doi.org/10.1080/23249935.2019.1640313

Širá, E., & RADVANSKÁ, K. (2015). Insurance as a Means of Risk Transfer (pp. 211–226). https://doi.org/10.14505/cfs.2014.ch9

Tawiah, K., Iddi, S., & Lotsi, A. (2020). On Zero-Inflated Hierarchical Poisson Models with Application to Maternal Mortality Data. International Journal of Mathematics and Mathematical Sciences, 2020, 1–8. https://doi.org/10.1155/2020/1407320

Tseung, S., Chan, I. W., Fung, T. C., Badescu, A., & Lin, X. (2022). A Posteriori Risk Classification and Ratemaking with Random Effects in the Mixture-of-Experts Model. https://doi.org/10.48550/arXiv.2209.15212

Tzougas, G., & Pignatelli di Cerchiara, A. (2021). The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking. Insurance: Mathematics and Economics, 101, 602–625. https://doi.org/https://doi.org/10.1016/j.insmatheco.2021.10.001

Wolny-Dominiak, A., & Sobiecki, D. (2014, November). The Poisson regression with fixed and random effects in non-life insurance ratemaking.

Wu, S. (2022). Poisson-Gamma mixture processes and applications to premium calculation. Communications in Statistics - Theory and Methods, 51(17), 5913–5936. https://doi.org/10.1080/03610926.2020.1850791




DOI: https://doi.org/10.31764/jtam.v9i1.27837

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Fevi Novkaniza, Irene Devina Putri, Rahmat Al Kafi, Sindy Devila

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: