Spatial Clustering Regression in Identifying Local Factors in Stunting Cases in Indonesia

Ummul Auliyah Syam, Anik Djuraidah, Utami Dyah Syafitri

Abstract


Stunting is a significant health problem in Indonesia with high spatial disparities between regions. This study applies the Spatial Clustering Regression (SCR) method to analyze spatial patterns and identify local factors influencing stunting. SCR is a method that combines spatial regression and clustering analysis simultaneously using a k-means clustering-based formulation and a penalty likelihood function motivated by the Potts model to encourage similar clustering in adjacent locations with regression parameter estimation done locally in areas that have similar characteristics. This quantitative study uses secondary data from the Central Bureau of Statistics in 2022 covering 510 districts/cities, with one response variable (percentage of stunting) and seven explanatory variables reflecting socioeconomic, health, and infrastructure conditions. The results show that SCR divides the region into four spatial clusters characterized by different local factors. Cluster 1 has the lowest percentage of stunting that is influenced by access to clean water, sanitation, and education, Cluster 2 by poverty rate, number of public health centers, access to clean water, and education, Cluster 3 by poverty and nutrition of pregnant women, and Cluster 4 is the most vulnerable area with the highest stunting rate with a significant influential factor which is access to sanitation. The SCR approach allows for easier and more in-depth interpretation of results than other spatial methods such as GWR, as it can capture complex spatial patterns in the form of regional clusterings. These results provide a strong basis for formulating region-specific intervention policies, such as poverty alleviation and sanitation improvement in Cluster 4, strengthening health services in Cluster 2, developing education and nutrition programs in Cluster 3, and maintaining and improving nutrition consumption in Cluster 1.

Keywords


Cluster Analysis; Geographically Weighted Regression; Spatial Analysis; Spatial Clustering Regression; Stunting.

Full Text:

DOWNLOAD [PDF]

References


Akinwande, M. O., Dikko, H. G., & Samson, A. (2015). Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis. Open Journal of Statistics, 05(07), 754–767. https://doi.org/10.4236/ojs.2015.57075

Alam, F. K., Widyaningsih, Y., & Nurrohmah, S. (2021). Geographically weighted logistic regression modeling on stunting cases in Indonesia. Journal of Physics: Conference Series, 1722(1), 1-8. https://doi.org/10.1088/1742-6596/1722/1/012085

Ali, A. (2021). Current Status of Malnutrition and Stunting in Pakistani Children: What Needs to Be Done? Journal of the American College of Nutrition, 40(2), 180–192. https://doi.org/10.1080/07315724.2020.1750504

Anggraini, Y., & Romadona, N. F. (2020). Review of Stunting in Indonesia. Proceedings of the International Conference on Early Childhood Education and Parenting 2019, 454, 281–284. https://doi.org/10.2991/assehr.k.200808.055

Azis, A. A., & Aswi, A. (2023). Spatial Clustering of Stunting Cases in Indonesia: a Bayesian Approach. Communications in Mathematical Biology and Neuroscience, 2023(28), 1–11. https://doi.org/10.28919/cmbn/7898

Beal, T., Tumilowicz, A., Sutrisna, A., Izwardy, D., & Neufeld, L. M. (2018). A review of child stunting determinants in Indonesia. Maternal & Child Nutrition, 14(4), 1-10. https://doi.org/10.1111/mcn.12617

Cameron, L., Chase, C., Haque, S., Joseph, G., Pinto, R., & Wang, Q. (2021). Childhood stunting and cognitive effects of water and sanitation in Indonesia. Economics and Human Biology, 40(100944), 1-38. https://doi.org/10.1016/j.ehb.2020.100944

Djara, V. A. D., Andriyana, Y., & Noviyanti, L. (2022). Modelling the Prevalence of Stunting Toddlers Using Spatial Autoregressive With Instrument Variable and S-Estimator. Communications in Mathematical Biology and Neuroscience, 2022(29), 1–23. https://doi.org/10.28919/cmbn/7234

Djuraidah, A. (2020). Monograph Penerapan dan Pengembangan Regresi Spasial dengan Studi Kasus pada Kesehatan, Sosial, dan Ekonomi. PT Penerbit IPB Press.

Eryando, T., Sipahutar, T., Budhiharsana, M. P., Siregar, K. N., Nur Aidi, M., Minarto, Utari, D. M., Rahmaniati, M., & Hendarwan, H. (2022). Spatial analysis of stunting determinants in 514 Indonesian districts/cities: Implications for intervention and setting of priority. Geospatial Health, 17(1055), 1-7. https://doi.org/10.4081/gh.2022.1055

Fitri, D. J., Djuraidah, A., & Wijayanto, H. (2024). Bayesian Conditional Negative Binomial Autoregressive Model: A Case Study of Stunting on Java Island in 2021. Communications in Mathematical Biology and Neuroscience, 2024(18), 1–17. https://doi.org/10.28919/cmbn/8281

Kholifia, N., Rahardjo, S., Muksar, M., Atikah, N., & Afifah, D. L. (2021). Spatial analysis of factors influencing Gross Regional Domestic Product (GRDP) in East Java: A spatial durbin error model analysis. Journal of Physics: Conference Series, 1918(4), 1–7. https://doi.org/10.1088/1742-6596/1918/4/042044

Lee, J., Gangnon, R. E., & Zhu, J. (2017). Cluster detection of spatial regression coefficients. Statistics in Medicine, 36(7), 1118–1133. https://doi.org/10.1002/sim.7172

Li, F., & Sang, H. (2019). Spatial Homogeneity Pursuit of Regression Coefficients for Large Datasets. Journal of the American Statistical Association, 114(527), 1050–1062. https://doi.org/10.1080/01621459.2018.1529595

Louzada, F., Do Nascimento, D. C., & Egbon, O. A. (2021). Spatial statistical models: An overview under the bayesian approach. Axioms, 10(4), 1–38. https://doi.org/10.3390/axioms10040307

Ministry of Health. (2022). Buku Saku Hasil Survey Status Gizi Indonesia (SSGI) Tahun 2022. Kementerian Kesehatan RI. https://repository.badankebijakan.kemkes.go.id/id/eprint/4855

Ministry of Health. (2024). Profil Kesehatan Indonesia 2023. Kementerian Kesehatan RI. https://kemkes.go.id/id/profil-kesehatan-indonesia-2023

Muche, A., Melaku, M. S., Amsalu, E. T., & Adane, M. (2021). Using geographically weighted regression analysis to cluster under-nutrition and its predictors among under-five children in Ethiopia: Evidence from demographic and health survey. PLOS ONE, 16(5), 1–30. https://doi.org/10.1371/journal.pone.0248156

Muhamad, Z., Mahmudiono, T., Abihail, C. T., Sahila, N., Wangi, M. P., Suyanto, B., & Binti Abdullah, N. A. (2023). Preliminary Study: The Effectiveness of Nutrition Education Intervention Targeting Short-Statured Pregnant Women to Prevent Gestational Stunting. Nutrients, 15(19), 1–11. https://doi.org/10.3390/nu15194305

Nicholson, D., Vanli, O. A., Jung, S., & Ozguven, E. E. (2019). A spatial regression and clustering method for developing place-specific social vulnerability indices using census and social media data. International Journal of Disaster Risk Reduction, 38(101224), 1-14. https://doi.org/10.1016/j.ijdrr.2019.101224

Nursyamsiyah, Sobrie, Y., & Sakti, B. (2021). Faktor-faktor yang berhubungan dengan kejadian stunting pada anak usia 24-59 bulan. Jurnal Ilmu Keperawatan Jiwa, 4(6), 611–622. https://journal.ppnijateng.org/index.php/jikj

Rizal, M. F., & van Doorslaer, E. (2019). Explaining the fall of socioeconomic inequality in childhood stunting in Indonesia. SSM - Population Health, 9(100469), 1–10. https://doi.org/10.1016/j.ssmph.2019.100469

Sugasawa, S., & Murakami, D. (2021). Spatially clustered regression. Spatial Statistics, 44(100525), 1-16. https://doi.org/10.1201/9781439891117

Sukmawati, S., Djuraidah, A., & Wigena, A. H. (2021). Spatial Clustered Regression Analysis of 2017 Getis Score Indonesian Malaria Prevalence Data. Journal of Physics: Conference Series, 1863(1), 1-8. https://doi.org/10.1088/1742-6596/1863/1/012043

Vaivada, T., Akseer, N., Akseer, S., Somaskandan, A., Stefopulos, M., & Bhutta, Z. A. (2020). Stunting in childhood: An overview of global burden, trends, determinants, and drivers of decline. American Journal of Clinical Nutrition, 112(2), 777S-791S. https://doi.org/10.1093/ajcn/nqaa159

WHO. (2015). Stunting in a nutshell. World Health Organization. https://www.who.int/news/item/19-11-2015-stunting-in-a-nutshell

Zhong, X., Wang, P., & Zhang, H. (2022). Spatial homogeneity pursuit of regression coefficients for hand, foot an mouth disease in Xinjiang Uygur Autonomous Region in 2018. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-26003-6




DOI: https://doi.org/10.31764/jtam.v9i2.29803

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ummul Auliyah Syam, Anik Djuraidah, Syafitri Dyah Utami

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: