Portfolio Optimization for Rupiah Exchange Rate using Multidimensional Geometric Brownian Motion Model

Siti Masitah, Retno Budiarti, I Gusti Putu Purnaba

Abstract


Exchange rate fluctuations are critical in ensuring economic stability and shaping foreign investment, while foreign currencies serve as asset and wealth diversification instruments. This study aims to predict foreign exchange rates with a multidimensional geometric Brownian motion model and determine the optimal portfolio fund allocation with the Markowitz model using the Moore-Pendrose method. The multidimensional GBM model was employed for its ability to capture the volatility and interdependence among multiple currencies, making it more suitable for multi-asset portfolios than univariate models. The Markowitz model was used to determine the optimal asset allocation that achieves a specified expected return with minimal risk, while the Moore-Penrose method was applied to address matrix inversion challenges in high-dimensional data. Using data from 2023 to April 2024 on the Indonesian rupiah against the Singapore Dollar (SGD), Chinese Yuan (CNY), and Euro (EUR), this study finds that the multidimensional GBM model effectively forecasts exchange rate movements, as indicated by MAPE values below 10% for each currency. "The optimal portfolio yields a risk of 0.28% and an expected return of 0.009%, with asset allocations of 90.3% in SGD, 8.2% in CNY, and 1.5% in EUR. The dominance of SGD in the optimal portfolio suggests it was the most favorable investment option against the rupiah during the study period. This reflects Singapore's strong economic fundamentals and strategic position as a global financial hub. These findings provide valuable insights for investors and financial analysts seeking to manage currency risk and enhance returns through data-driven diversification strategies.


Keywords


Multidimensional Geometric Brownian Motion; Portfolio Optimization; Moore-Penrose Pseudoinverse; Markowitz Model.

Full Text:

DOWNLOAD [PDF]

References


Agustini, W. F., Affianti, I. R., & Putri, E. R. M. (2018). Stock Price Prediction Using Geometric Brownian Motion. Journal of Physics: Conference Series, 974(1), 9–12. https://doi.org/10.1088/1742-6596/974/1/012047

Aksaraylı, M., & Pala, O. (2018). A Polynomial Goal Programming Model for Portfolio Optimization Based on Entropy And Higher Moments. Expert Systems with Applications, 94(1), 185–192. https://doi.org/10.1016/j.eswa.2017.10.056

Brătian, V., Acu, A. M., Oprean‐stan, C., Dinga, E., & Ionescu, G. M. (2021). Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion. Mathematics, 9(22), 11–20. https://doi.org/10.3390/math9222983

Carissa, N., & Khoirudin, R. (2020). The Factors Affecting The Rupiah Exchange Rate in Indonesia. Jurnal Ekonomi Pembangunan, 18(1), 37–46. https://doi.org/10.29259/jep.v18i1.9826

Deng, G.-F., Lin, W.-T., & Lo, C.-C. (2012). Markowitz-Based Portfolio Selection With Cardinality Constraints Using Improved Particle Swarm Optimization. Expert Systems with Applications, 39(4), 4558–4566. https://doi.org/10.1016/j.eswa.2011.09.129

Eris, I., Putro, T. S., & Kornita, S. E. (2017). Pengaruh Tingkat Suku Bunga Bi Rate, Jumlah Uang Beredar dan Neraca Pembayaran Terhadap Nilai Tukar Rupiah Tahun 2006-2015. Jurnal Online Mahasiswa Fakultas Ekonomi Universitas Riau, 4(1), 393–404.

Germansah, G., Tjahjana, R. H., & Herdiana, R. (2023). Geometric Brownian Motion in Analyzing Seasonality of Gold Derivative Prices. Eduvest - Journal of Universal Studies, 3(8), 1558–1572. https://doi.org/10.59188/eduvest.v3i8.892

Grechuk, B., & Zabarankin, M. (2014). Inverse Portfolio Problem With Mean-Deviation Model. European Journal of Operational Research, 234(2), 481–490. https://doi.org/10.1016/j.ejor.2013.04.056

Huang, X., & Yang, T. (2020). How Does Background Risk Affect Portfolio Choice: An Analysis Based On Uncertain Mean-Variance Model With Background Risk. Journal of Banking & Finance, 111(3), 2039–2054. https://doi.org/10.1016/j.jbankfin.2019.105726

Ibrahim, S. N. I., Misiran, M., & Laham, M. F. (2021). Geometric Fractional Brownian Motion Model For Commodity Market Simulation. Alexandria Engineering Journal, 60(1), 955–962. https://doi.org/10.1016/j.aej.2020.10.023

Kalayci, C. B., Ertenlice, O., & Akbay, M. A. (2019). A Comprehensive Review Of Deterministic Models And Applications For Mean-Variance Portfolio Optimization. Expert Systems with Applications, 125(1), 345–368. https://doi.org/10.1016/j.eswa.2019.02.011

Kloeden, P. ., & Platen, E. (1992). Numerical Solution of Stochastic Differential Equation. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-662-12616-5

Li, B., Sun, Y., Aw, G., & Teo, K. L. (2019). Uncertain Portfolio Optimization Problem Under A Minimax Risk Measure. In Applied Mathematical Modelling, 76(1), 274–281. https://doi.org/10.1016/j.apm.2019.06.019

Li, B., & Zhang, R. (2021). A New Mean-Variance-Entropy Model For Uncertain Portfolio Optimization With Liquidity Diversification. Chaos, Solitons & Fractals, 146(1), 989–1003. https://doi.org/10.1016/j.chaos.2021.110842

Liu, S.-T. (2011). The Mean-Absolute Deviation Portfolio Selection Problem With Interval-Valued Returns. Journal of Computational and Applied Mathematics, 235(14), 4149–4157. https://doi.org/10.1016/j.cam.2011.03.008

Lv, S., Wu, Z., & Yu, Z. (2016). Continuous-Time Mean-Variance Portfolio Selection With The Random Horizon in an Incomplete Market. Automatica, 69(1), 176–180. https://doi.org/10.1016/j.automatica.2016.02.017

Ramos, A. L., Mazzinghy, D. B., Barbosa, V. da S. B., Oliveira, M. M., & da Silva, G. R. (2019). Evaluation Of An Iron Ore Price Forecast Using A Geometric Brownian Motion Model. Revista Escola de Minas, 72(1), 9–15. https://doi.org/10.1590/0370-44672018720140

Ramos, H. P., Righi, M. B., Guedes, P. C., & Müller, F. M. (2023). A Comparison Of Risk Measures For Portfolio Optimization With Cardinality Constraints. Expert Systems with Applications, 228(1), 6–12. https://doi.org/10.1016/j.eswa.2023.120412

Reddy, K., & Clinton, V. (2016). Simulating Stock Prices Using Geometric Brownian Motion: Evidence From Australian Companies. Australasian Accounting, Business and Finance Journal, 10(3), 23–47. https://doi.org/10.14453/aabfj.v10i3.3

Silaban, S., Aadilah, H., & Matondang, K. (2023). Influence of Rupiah Exchange Rate on Indonesia’s Economic Growth: Literature Study. Journal of Business Management and Economic Development, 1(2), 123–131. https://doi.org/10.59653/jbmed.v1i02.48

Suganthi, K., & Jayalalitha, G. (2019). Geometric Brownian Motion in Stock Prices. Journal of Physics: Conference Series, 1377(1). https://doi.org/10.1088/1742-6596/1377/1/012016




DOI: https://doi.org/10.31764/jtam.v9i2.29953

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Siti Masitah, Retno Budiarti, I Gusti Putu Purnaba

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: