Comparing the Accuracy of Markov Switching – AR and Prophet Models in Predicting the Blue Bird Stock Prices

Sherly Yulianty, I Wayan Mangku, Retno Budiarti

Abstract


One form of investment asset that is in high demand for profit is stocks. However, stock prices fluctuate, so a mathematical model is needed to model the movement and calculate stock price predictions. Stock price movements often form several groups (states) of change, so the Markov Switching Autoregressive (MS-AR) model can be used to model and calculate stock price predictions. In addition, stock price movements often contain trend and seasonal patterns, so the Prophet model can be used to model movements and calculate stock price predictions. In this study, the Prophet model is modified by generating random numbers that spread normally with parameter values obtained from the error value of the Prophet base model. This study aims to compare the performance of the MS-AR model with the Prophet model in predicting BIRD stock prices. This research is a quantitative study with secondary data in the form of BIRD stock closing price data for the period 11 February 2023 to 11 February 2024. In this study, two models, MS-AR and Prophet, were built separately. In the MS-AR model, it is necessary to pay attention to the assumptions of the data used, namely normal distribution and stationary. In the Prophet model, there are no special assumptions like those of the MS-AR model, but the Prophet model is good for data containing trends and seasonal patterns. The results of this study show that among the MS-AR models, the MS(2)-AR(3) model is the best model. In addition, the results show that the modified Prophet model performs better than the basic Prophet model. The goodness of model performance is measured by the Mean Absolute Percentage Error (MAPE) metric, with MAPE values for each model being 5.54% for MS(2)-AR(3), 3.38% for the Prophet base model, and 2.88% for Prophet modification. Based on the MAPE value, the Prophet (modified) model is able to predict the closing price of shares better than the MS(2)-AR(3) and Prophet (basic) models. The results of this study can be used by investors as a measuring tool in reading and determining stock price predictions.

Keywords


Autoregressive; Blue Bird; Markov Switching; Prophet; Stock

Full Text:

DOWNLOAD [PDF]

References


Agung, I. W. P., Arifin, T., Junianto, E., Rabbani, M. I., & Mayangsari, A. D. (2025). Stock’s selection and trend prediction using technical analysis and artificial neural network. International Journal of Advances in Applied Sciences, 14(1), 151–163. https://doi.org/10.11591/ijaas.v14.i1.pp151-163

Almira, N. P. A. K., & Wiagustini, N. L. P. (2020). Return on Asset, Return on Equity, Dan Earning Per Share Berpengaruh Terhadap Return Saham. E-Jurnal Manajemen Universitas Udayana, 9(3), 1069. https://doi.org/10.24843/ejmunud.2020.v09.i03.p13

Ashraf, S., Khalid, A., Batool, B., Tlija, M., Jana, C., & Pamucar, D. (2025). Stock Market Prediction Based Multi-Attribute Decision Making Model Using Picture Fuzzy Z^-Information. International Journal of Computational Intelligence Systems, 18(1). https://doi.org/10.1007/s44196-024-00664-9

Babarinde, T. O., & Madyira, D. M. (2022). Dataset and ANFIS model prediction of the performance of graphene nano-LPG in domestic refrigerator system. Data in Brief, 44, 108548. https://doi.org/10.1016/j.dib.2022.108548

Cappello, C., Congedi, A., De Iaco, S., & Mariella, L. (2025). Traditional Prediction Techniques and Machine Learning Approaches for Financial Time Series Analysis. Mathematics, 13(3), 1–21. https://doi.org/10.3390/math13030537

Chang, V., Xu, Q. A., Chidozie, A., & Wang, H. (2024). Predicting Economic Trends and Stock Market Prices with Deep Learning and Advanced Machine Learning Techniques. Electronics (Switzerland), 13(17). https://doi.org/10.3390/electronics13173396

Cipra, T. (2020). Time Series in Economics and Finance. Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-46347-2

de Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean Absolute Percentage Error for regression models. Neurocomputing, 192, 38–48. https://doi.org/10.1016/j.neucom.2015.12.114

Deistler, M., Scherrer, W. (2022). Time Series Models. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-13213-1

Demir, S. (2022). Comparison of Normality Tests in Terms of Sample Sizes under Different Skewness and Kurtosis Coefficients. Journal of Assessment Tools in Education, 9(2), 397–409. https://doi.org/10.21449/ijate.1101295

Fränti, P., & Sieranoja, S. (2019). How much can k-means be improved by using better initialization and repeats? Pattern Recognition, 93, 95–112. https://doi.org/10.1016/j.patcog.2019.04.014

Geni, B. Y., Santony, J., & Sumijan. (2019). Prediksi Pendapatan Terbesar pada Penjualan Produk Cat dengan Menggunakan Metode Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 1(4), 15–20. https://doi.org/10.37034/infeb.v1i4.5

Hartanto, B. (2022). Analisis Prediksi Indeks Saham Syariah Indonesia (ISSI) Menggunakan Metode Garch. EKONOMIKA45 : Jurnal Ilmiah Manajemen, Ekonomi Bisnis, Kewirausahaan, 10(1), 281–288. https://doi.org/10.30640/ekonomika45.v10i1.893

He, G., Li, Z., Yu, L., & Zhou, Z. (2025). Does commercial reform embracing digital technologies mitigate stock price crash risk? Journal of Corporate Finance, 91, 102741. https://doi.org/10.1016/j.jcorpfin.2025.102741

Hery., Haryani, C. A., Widjaja, A. E., & Mitra, A. R. (2024). Harnessing the Power of Prophet Algorithm for Advanced Predictive Modeling of Grab Holdings Stock Prices. Journal of Applied Data Sciences, 5(2), 326–341. https://doi.org/10.47738/jads.v5i2.181

He, G., Li, Z., Yu, L., & Zhou, Z. (2025). Does commercial reform embracing digital technologies mitigate stock price crash risk? Journal of Corporate Finance, 91, 102741. https://doi.org/10.1016/j.jcorpfin.2025.102741

Inayati, S., Iriawan, N., & Irhamah. (2024). A Markov Switching Autoregressive Model with Time-Varying Parameters. Forecasting, 6, 568–590. https://doi.org/10.3390/forecast6030031

Javier, L., & Héctor, H. (2021). Theory and Applications of Time Series Analysis and Forecasting. Springer Nature Switzerland. https://doi.org/10.3390/forecast6030031

Karmakar, R., Chatterjee, S., Datta, D., & Chakraborty, D. (2024). Application of harmony search algorithm in optimizing autoregressive integrated moving average : A study on a data set of Coronavirus Disease 2019. Systems and Soft Computing, 6. https://doi.org/10.1016/j.sasc.2023.200067

Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669–679. https://doi.org/10.1016/j.ijforecast.2015.12.003

Kolambe, M., & Arora, S. (2025). Time Series Forecasting Enhanced by Integrating GRU and N-BEATS. International Journal of Information Engineering and Electronic Business, 17(1), 140–158. https://doi.org/10.5815/ijieeb.2025.01.07

Kömm, H., & Küsters, U. (2015). Forecasting zero-inflated price changes with a Markov switching mixture model for autoregressive and heteroscedastic time series. International Journal of Forecasting, 31(3), 598–608. https://doi.org/10.1016/j.ijforecast.2014.10.008

Liantoni, F., & Agusti, A. (2020). Forecasting bitcoin using double exponential smoothing method based on mean absolute percentage error. International Journal on Informatics Visualization, 4(2), 91–95. https://doi.org/10.30630/joiv.4.2.335

Lim, S., Flores, E., Barnett, C., & Islam, M. M. (2025). Analyzing Cambodia Securities Exchange Index Returns using the Markov-Switching Autoregressive Model. International Journal of Economics and Financial Issues , 15(2), 98–105. https://doi.org/10.32479/ijefi.17647

Lu, X., Zeng, Q., Zhong, J., & Zhu, B. (2024). International stock market volatility: A global tail risk sight. Journal of International Financial Markets, Institutions and Money, 91. https://doi.org/10.1016/j.intfin.2023.101904

Luiz, A. J. B., & de LIMA, M. A. (2021). Application of the kolmogorov-smirnov test to compare greenhouse gas emissions over time. Revista Brasileira de Biometria, 39(1), 60–70. https://doi.org/10.28951/RBB.V39I1.498

Maitra, S., & Politis, D. N. (2024). Prepivoted Augmented Dickey-Fuller Test with Bootstrap-Assisted Lag Length Selection. Stats, 7(4), 1226–1243. https://doi.org/10.3390/stats7040072

Makoni, T., & Ndlovu, N. T. (2024). Modelling and forecasting Masvingo Province maternal mortality using time series models. Statistics Optimization and Information Computing, 12, 1543–1552. https://doi.org/10.19139/soic-2310-5070-2011

Myint, K. N., & Khaing, M. (2025). Predictive Analytics System for Time Series Stock Data Using LSTM with Residual Unit and Attention Mechanism. International Journal of Intelligent Engineering and Systems, 18(1), 1137–1150. https://doi.org/10.22266/ijies2025.0229.82

Patriya, E. (2020). Implementasi support vector machine pada prediksi harga saham gabungan (IHSG). Jurnal Ilmiah Teknologi dan Rekayasa, 25(100), 24–38. https://doi.org?10.35760/tr.2020.v25i1.2571

Primawati, A., & Trinoto, A. A. (2024). Evaluasi Kinerja Prophet untuk Prediksi Harga Emas Berjangka. Faktor Exacta, 17(1), 40–46. https://doi.org/10.30998/faktorexacta.v17i1.22013

Privalsky, V. (2023). Progress in Geophysics Practical Time Series Analysis in Natural Sciences. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-16891-8

Rahmadewi, P. W., & Abundanti, N. (2018). Pengaruh Eps, Per, Cr Dan Roe Terhadap Harga Saham Di Bursa Efek Indonesia. E-Jurnal Manajemen Universitas Udayana, 7(4), 2106. https://doi.org/10.24843/ejmunud.2018.v07.i04.p14

Ruppert, D., & Matteson, D. S. (2015). Statistics and Data Analysis for Financial Engineering. Springer. https://doi.org/10.1007/978-1-4939-2614-5

Sanjaya, H., Angga Kurniawan, Ibnu Ickwantoro, Abdul Ra’uf Alfansani, Kusrini, & Dina Maulina. (2023). Prediksi Jumlah Kejadian Titik Panas Pada Lahan Gambut Di Indonesia Menggunakan Prophet. INFOTECH Journal, 9(2), 354–360. https://doi.org/10.31949/infotech.v9i2.6073

Shaju, B., & Narayan, V. (2023). Prediction Model for Stock Trading using Combined Long Short Term Memory and Neural Prophet with Regressors. International Journal of Intelligent Engineering and Systems, 16(6), 956–964. https://doi.org/10.22266/ijies2023.1231.79

Singh, R. K., Singh, Y., Kumar, S., Kumar, A., & Alruwaili, W. S. (2024). Mapping Risk – Return Linkages and Volatility Spillover in BRICS Stock Markets through the Lens of Linear and Non-Linear GARCH Models. Journal of Risk and Financial Management, 17(10), 1-26. https://doi.org/10.3390.jrfm17100437

Sukartaatmadja, I., Khim, S., & Lestari, M. N. (2023). Faktor-faktor Yang Mempengaruhi Harga Saham Perusahaan. Jurnal Ilmiah Manajemen Kesatuan, 11(1), 21–40. https://doi.org/10.37641/jimkes.v11i1.1627

Taylor, S. J., & Letham, B. (2018). Forecasting at Scale. American Statistician, 72(1), 37–45. https://doi.org/10.1080/00031305.2017.1380080

Wang, P. C., & Vo, T. T. H. (2025). Stock price prediction based on dual important indicators using ARIMAX: A case study in Vietnam. Journal of Intelligent Systems, 34(1). https://doi.org/10.1515/jisys-2024-0101

Yamamoto, H., Ano, S., & Yamazaki, K. (2015). Modeling of Dynamic Latency Variations Using Auto-Regressive Model and Markov Regime Switching. Journal of Information Processing, 23(4), 420–429. https://doi.org/10.2197/ipsjjip.23.420

Zhang, Y., Lei, L., & Wei, Y. (2020). Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching. North American Journal of Economics and Finance, 52. https://doi.org/10.1016/j.najef.2020.101145




DOI: https://doi.org/10.31764/jtam.v9i2.30096

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Sherly Yulianty, I Wayan Mangku, Retno Budiarti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: