Comparing the Accuracy of Markov Switching – AR and Prophet Models in Predicting the Blue Bird Stock Prices
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Agung, I. W. P., Arifin, T., Junianto, E., Rabbani, M. I., & Mayangsari, A. D. (2025). Stock’s selection and trend prediction using technical analysis and artificial neural network. International Journal of Advances in Applied Sciences, 14(1), 151–163. https://doi.org/10.11591/ijaas.v14.i1.pp151-163
Almira, N. P. A. K., & Wiagustini, N. L. P. (2020). Return on Asset, Return on Equity, Dan Earning Per Share Berpengaruh Terhadap Return Saham. E-Jurnal Manajemen Universitas Udayana, 9(3), 1069. https://doi.org/10.24843/ejmunud.2020.v09.i03.p13
Ashraf, S., Khalid, A., Batool, B., Tlija, M., Jana, C., & Pamucar, D. (2025). Stock Market Prediction Based Multi-Attribute Decision Making Model Using Picture Fuzzy Z^-Information. International Journal of Computational Intelligence Systems, 18(1). https://doi.org/10.1007/s44196-024-00664-9
Babarinde, T. O., & Madyira, D. M. (2022). Dataset and ANFIS model prediction of the performance of graphene nano-LPG in domestic refrigerator system. Data in Brief, 44, 108548. https://doi.org/10.1016/j.dib.2022.108548
Cappello, C., Congedi, A., De Iaco, S., & Mariella, L. (2025). Traditional Prediction Techniques and Machine Learning Approaches for Financial Time Series Analysis. Mathematics, 13(3), 1–21. https://doi.org/10.3390/math13030537
Chang, V., Xu, Q. A., Chidozie, A., & Wang, H. (2024). Predicting Economic Trends and Stock Market Prices with Deep Learning and Advanced Machine Learning Techniques. Electronics (Switzerland), 13(17). https://doi.org/10.3390/electronics13173396
Cipra, T. (2020). Time Series in Economics and Finance. Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-46347-2
de Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean Absolute Percentage Error for regression models. Neurocomputing, 192, 38–48. https://doi.org/10.1016/j.neucom.2015.12.114
Deistler, M., Scherrer, W. (2022). Time Series Models. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-13213-1
Demir, S. (2022). Comparison of Normality Tests in Terms of Sample Sizes under Different Skewness and Kurtosis Coefficients. Journal of Assessment Tools in Education, 9(2), 397–409. https://doi.org/10.21449/ijate.1101295
Fränti, P., & Sieranoja, S. (2019). How much can k-means be improved by using better initialization and repeats? Pattern Recognition, 93, 95–112. https://doi.org/10.1016/j.patcog.2019.04.014
Geni, B. Y., Santony, J., & Sumijan. (2019). Prediksi Pendapatan Terbesar pada Penjualan Produk Cat dengan Menggunakan Metode Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 1(4), 15–20. https://doi.org/10.37034/infeb.v1i4.5
Hartanto, B. (2022). Analisis Prediksi Indeks Saham Syariah Indonesia (ISSI) Menggunakan Metode Garch. EKONOMIKA45 : Jurnal Ilmiah Manajemen, Ekonomi Bisnis, Kewirausahaan, 10(1), 281–288. https://doi.org/10.30640/ekonomika45.v10i1.893
He, G., Li, Z., Yu, L., & Zhou, Z. (2025). Does commercial reform embracing digital technologies mitigate stock price crash risk? Journal of Corporate Finance, 91, 102741. https://doi.org/10.1016/j.jcorpfin.2025.102741
Hery., Haryani, C. A., Widjaja, A. E., & Mitra, A. R. (2024). Harnessing the Power of Prophet Algorithm for Advanced Predictive Modeling of Grab Holdings Stock Prices. Journal of Applied Data Sciences, 5(2), 326–341. https://doi.org/10.47738/jads.v5i2.181
He, G., Li, Z., Yu, L., & Zhou, Z. (2025). Does commercial reform embracing digital technologies mitigate stock price crash risk? Journal of Corporate Finance, 91, 102741. https://doi.org/10.1016/j.jcorpfin.2025.102741
Inayati, S., Iriawan, N., & Irhamah. (2024). A Markov Switching Autoregressive Model with Time-Varying Parameters. Forecasting, 6, 568–590. https://doi.org/10.3390/forecast6030031
Javier, L., & Héctor, H. (2021). Theory and Applications of Time Series Analysis and Forecasting. Springer Nature Switzerland. https://doi.org/10.3390/forecast6030031
Karmakar, R., Chatterjee, S., Datta, D., & Chakraborty, D. (2024). Application of harmony search algorithm in optimizing autoregressive integrated moving average : A study on a data set of Coronavirus Disease 2019. Systems and Soft Computing, 6. https://doi.org/10.1016/j.sasc.2023.200067
Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669–679. https://doi.org/10.1016/j.ijforecast.2015.12.003
Kolambe, M., & Arora, S. (2025). Time Series Forecasting Enhanced by Integrating GRU and N-BEATS. International Journal of Information Engineering and Electronic Business, 17(1), 140–158. https://doi.org/10.5815/ijieeb.2025.01.07
Kömm, H., & Küsters, U. (2015). Forecasting zero-inflated price changes with a Markov switching mixture model for autoregressive and heteroscedastic time series. International Journal of Forecasting, 31(3), 598–608. https://doi.org/10.1016/j.ijforecast.2014.10.008
Liantoni, F., & Agusti, A. (2020). Forecasting bitcoin using double exponential smoothing method based on mean absolute percentage error. International Journal on Informatics Visualization, 4(2), 91–95. https://doi.org/10.30630/joiv.4.2.335
Lim, S., Flores, E., Barnett, C., & Islam, M. M. (2025). Analyzing Cambodia Securities Exchange Index Returns using the Markov-Switching Autoregressive Model. International Journal of Economics and Financial Issues , 15(2), 98–105. https://doi.org/10.32479/ijefi.17647
Lu, X., Zeng, Q., Zhong, J., & Zhu, B. (2024). International stock market volatility: A global tail risk sight. Journal of International Financial Markets, Institutions and Money, 91. https://doi.org/10.1016/j.intfin.2023.101904
Luiz, A. J. B., & de LIMA, M. A. (2021). Application of the kolmogorov-smirnov test to compare greenhouse gas emissions over time. Revista Brasileira de Biometria, 39(1), 60–70. https://doi.org/10.28951/RBB.V39I1.498
Maitra, S., & Politis, D. N. (2024). Prepivoted Augmented Dickey-Fuller Test with Bootstrap-Assisted Lag Length Selection. Stats, 7(4), 1226–1243. https://doi.org/10.3390/stats7040072
Makoni, T., & Ndlovu, N. T. (2024). Modelling and forecasting Masvingo Province maternal mortality using time series models. Statistics Optimization and Information Computing, 12, 1543–1552. https://doi.org/10.19139/soic-2310-5070-2011
Myint, K. N., & Khaing, M. (2025). Predictive Analytics System for Time Series Stock Data Using LSTM with Residual Unit and Attention Mechanism. International Journal of Intelligent Engineering and Systems, 18(1), 1137–1150. https://doi.org/10.22266/ijies2025.0229.82
Patriya, E. (2020). Implementasi support vector machine pada prediksi harga saham gabungan (IHSG). Jurnal Ilmiah Teknologi dan Rekayasa, 25(100), 24–38. https://doi.org?10.35760/tr.2020.v25i1.2571
Primawati, A., & Trinoto, A. A. (2024). Evaluasi Kinerja Prophet untuk Prediksi Harga Emas Berjangka. Faktor Exacta, 17(1), 40–46. https://doi.org/10.30998/faktorexacta.v17i1.22013
Privalsky, V. (2023). Progress in Geophysics Practical Time Series Analysis in Natural Sciences. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-16891-8
Rahmadewi, P. W., & Abundanti, N. (2018). Pengaruh Eps, Per, Cr Dan Roe Terhadap Harga Saham Di Bursa Efek Indonesia. E-Jurnal Manajemen Universitas Udayana, 7(4), 2106. https://doi.org/10.24843/ejmunud.2018.v07.i04.p14
Ruppert, D., & Matteson, D. S. (2015). Statistics and Data Analysis for Financial Engineering. Springer. https://doi.org/10.1007/978-1-4939-2614-5
Sanjaya, H., Angga Kurniawan, Ibnu Ickwantoro, Abdul Ra’uf Alfansani, Kusrini, & Dina Maulina. (2023). Prediksi Jumlah Kejadian Titik Panas Pada Lahan Gambut Di Indonesia Menggunakan Prophet. INFOTECH Journal, 9(2), 354–360. https://doi.org/10.31949/infotech.v9i2.6073
Shaju, B., & Narayan, V. (2023). Prediction Model for Stock Trading using Combined Long Short Term Memory and Neural Prophet with Regressors. International Journal of Intelligent Engineering and Systems, 16(6), 956–964. https://doi.org/10.22266/ijies2023.1231.79
Singh, R. K., Singh, Y., Kumar, S., Kumar, A., & Alruwaili, W. S. (2024). Mapping Risk – Return Linkages and Volatility Spillover in BRICS Stock Markets through the Lens of Linear and Non-Linear GARCH Models. Journal of Risk and Financial Management, 17(10), 1-26. https://doi.org/10.3390.jrfm17100437
Sukartaatmadja, I., Khim, S., & Lestari, M. N. (2023). Faktor-faktor Yang Mempengaruhi Harga Saham Perusahaan. Jurnal Ilmiah Manajemen Kesatuan, 11(1), 21–40. https://doi.org/10.37641/jimkes.v11i1.1627
Taylor, S. J., & Letham, B. (2018). Forecasting at Scale. American Statistician, 72(1), 37–45. https://doi.org/10.1080/00031305.2017.1380080
Wang, P. C., & Vo, T. T. H. (2025). Stock price prediction based on dual important indicators using ARIMAX: A case study in Vietnam. Journal of Intelligent Systems, 34(1). https://doi.org/10.1515/jisys-2024-0101
Yamamoto, H., Ano, S., & Yamazaki, K. (2015). Modeling of Dynamic Latency Variations Using Auto-Regressive Model and Markov Regime Switching. Journal of Information Processing, 23(4), 420–429. https://doi.org/10.2197/ipsjjip.23.420
Zhang, Y., Lei, L., & Wei, Y. (2020). Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching. North American Journal of Economics and Finance, 52. https://doi.org/10.1016/j.najef.2020.101145
DOI: https://doi.org/10.31764/jtam.v9i2.30096
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Sherly Yulianty, I Wayan Mangku, Retno Budiarti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: