Monitoring PH of Shrimp Water using Progressive Max Chart

Niam Rosyadi, Idrus Syahzaqi, Auron Saka Ibrahim, Raja Van Den Bosch Sihotang, Muhammad Ahsan, Muhammad Mashuri

Abstract


Control charts aim to reduce variability in the process and monitor for out-of- control processes. So far, the process of monitoring quality is usually carried out partially, namely monitoring the mean process and process variability. This approach is less effective and time-consuming because two separate charts must be created simultaneously. One alternative is to analyze both parameters simultaneously, such as through the Progressive Max Chart method (Mixed-Methods Research: Quantitative and Applied). The Progressive Max Chart is a control chart designed for monitoring both the mean and variability by considering the case of subgroup observations. This study uses a quantitative approach, combining primary data collection and simulations to generate findings through statistical analysis and quantifiable measurements. The purpose of this research is to compare methods such as the Progressive Max Chart, EWMA-Max, and Max Chart. The analysis results show that the Progressive Max Chart method performs better than the Max Chart and EWMA- Max Chart, both in terms of mean, variance, and mean-variance detection, for small shifts and large shifts. The control chart performance results provide optimal outcomes for monitoring out-of-control signals at subgroup sizes of n = 2, 3, 5. This is characterized by ARL₁ values that approach 1 more quickly. This method is applied to pH data from vannamei shrimp pond water located in Madura. The Progressive Max Chart method provides optimal results by maximizing the detection of in-control signals. Additionally, it is tested on synthesized data and demonstrates optimal performance in detecting both small and large shifts in mean, variance, and mean-variance.

Keywords


Simultaneous Control Chart; Progressive Max Chart; Max Chart; EWMA-Max Chart; Water PH.

Full Text:

DOWNLOAD [PDF]

References


Ajadi, J. O., Wang, Z., & Zwetsloot, I. M. (2021). A review of dispersion control charts for multivariate individual observations. Quality Engineering, 33(1), 60–75. https://doi.org/10.1080/08982112.2020.1755438

Aslam, M. (2016). A Mixed EWMA–CUSUM Control Chart for Weibull-Distributed Quality Characteristics. Quality and Reliability Engineering International, 32(8), 2987–2994. https://doi.org/10.1002/qre.1982

Çubukçu, H. C. (2021). Performance evaluation of internal quality control rules, EWMA, CUSUM, and the novel machine learning model. Turkish Journal of Biochemistry, 46(6), 661–670. https://doi.org/10.1515/TJB-2021-0199

Javaid, A., Noor-ul-Amin, M., & Hanif, M. (2020). A new Max-HEWMA control chart using auxiliary information. Communications in Statistics: Simulation and Computation, 49(5), 1285–1305. https://doi.org/10.1080/03610918.2018.1494282

Kim, S. H., Jung, E. J., Hong, D. L., Lee, S. E., Lee, Y. B., Cho, S. M., & Kim, S. B. (2020). Quality assessment and acceptability of whiteleg shrimp (Litopenaeus vannamei) using biochemical parameters. Fisheries and Aquatic Sciences, 23(1). https://doi.org/10.1186/s41240-020-00167-6

Knoth, S., Tercero-Gómez, V. G., Khakifirooz, M., & Woodall, W. H. (2021). The impracticality of homogeneously weighted moving average and progressive mean control chart approaches. Quality and Reliability Engineering International, 37(8), 3779–3794. https://doi.org/10.1002/qre.2950

Lu, S. L. (2017). Novel design of composite generally weighted moving average and cumulative sum charts. Quality and Reliability Engineering International, 33(8), 2397–2408. https://doi.org/10.1002/qre.2197

Malik, S., Hanif, M., Noor-ul-Amin, M., Khan, I., Ahmad, B., Abaker, A. O. I., & Ahmed Darwish, J. (2024). Max-mixed EWMA control chart for joint monitoring of mean and variance: an application to yogurt packing process. Scientific Reports, 14(1), 1–14. https://doi.org/10.1038/s41598-024-61132-0

Mustafa, A., Syah, R., Paena, M., Sugama, K., Kontara, E. K., Muliawan, I., Suwoyo, H. S., Asaad, A. I. J., Asaf, R., Ratnawati, E., Athirah, A., Makmur, Suwardi, & Taukhid, I. (2023). Strategy for Developing Whiteleg Shrimp (Litopenaeus vannamei) Culture Using Intensive/Super-Intensive Technology in Indonesia. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15031753

Osei-Aning, R., Abbasi, S. A., & Riaz, M. (2017). Mixed EWMA-CUSUM and mixed CUSUM-EWMA modified control charts for monitoring first order autoregressive processes. Quality Technology and Quantitative Management, 14(4), 429–453. https://doi.org/10.1080/16843703.2017.1304038

Qiu, P. (2018). Some perspectives on nonparametric statistical process control. Journal of Quality Technology, 50(1), 49–65. https://doi.org/10.1080/00224065.2018.1404315

Quinino, R. C., Ho, L. L., Cruz, F. R. B., & Bessegato, L. F. (2020). A control chart to monitor the process mean based on inspecting attributes using control limits of the traditional X-bar chart. Journal of Statistical Computation and Simulation, 90(9), 1639–1660. https://doi.org/10.1080/00949655.2020.1741588

Riaz, M., Abid, M., Abbas, Z., & Nazir, H. Z. (2021). An enhanced approach for the progressive mean control charts: A discussion and comparative analysis. Quality and Reliability Engineering International, 37(1), 1–9. https://doi.org/10.1002/qre.273

Rifki, K. A. F., Ahsan, M., & Mashuri, M. (2025). Simulation Studies Performance of Ewma-Max Mchart Based on Synthetic Data. Barekeng, 19(2), 1353–1364. https://doi.org/10.30598/barekengvol19iss2pp1353-1364

Sanusi, R. A., Teh, S. Y., & Khoo, M. B. C. (2020). Simultaneous monitoring of magnitude and time- between-events data with a Max-EWMA control chart. Computers and Industrial Engineering, 142(December 2017), 106378. https://doi.org/10.1016/j.cie.2020.106378

Syafitri, U., Sartono, B., & Goos, P. (2015). I-optimal design of mixture experiments in the presence of ingredient availability constraints. Journal of Quality Technology, 47(3), 220–234. https://doi.org/10.1080/00224065.2015.11918129

Syarifah Nazia, Safrizal, & Muhammad Fuad. (2023). Peranan Statistical Quality Control (Sqc) Dalam Pengendalian Kualitas: Studi Literatur. Jurnal Mahasiswa Akuntansi Samudra, 4(3), 125–138. https://doi.org/10.33059/jmas.v4i3.8079

Setyastuti, T. A., Suseno, D. N., Rumayasa, I. G. P., Hakimah, N., & Hilmy, F. M. (2023). Study of the population Vibrio Sp. on the health of vanname shrimp (Litopenaeus vannamei) in Cv. Reksa Bumi Situbondo. IOP Conference Series: Earth and Environmental Science, 1273(1). https://doi.org/10.1088/1755-1315/1273/1/012017

Sulaiman, H., Yusof, A. A., & Mohamed Nor, M. K. (2025). Automated Hydroponic Nutrient Dosing System: A Scoping Review of pH and Electrical Conductivity Dosing Frameworks. AgriEngineering, 7(2), 1–23. https://doi.org/10.3390/agriengineering7020043




DOI: https://doi.org/10.31764/jtam.v9i4.30255

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Niam Rosyadi, Idrus Syahzaqi, Auron Saka Ibrahim, Raja Van Den Bosch Sihotang, Muhammad Ahsan, Muhammad Mashuri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: