Interpretable Ensemble Learning for Online Public Acces Catalog Technology Acceptance Prediction
Abstract
The Online Public Access Catalog (OPAC) is a digital system that enables users to search for library references through an online interface using keywords. OPAC has been implemented to enhance IAIN Kediri library services. However, its usage has never been evaluated, resulting in limited understanding of user acceptance levels. This study aims to predict the acceptance of OPAC and identify the most influential variables using interpretable ensemble learning methods. This research used cross sectional design with data collected via a survey involving 400 IAIN Kediri students who had experience using the OPAC system. The study integrates the Technology Acceptance Model (TAM) with the Value-Based Adoption Model (VAM) framework. Predictor variables consist of Perceived Usefulness, Perceived Ease of Use, Intention, Technicality, and Enjoyment. The target variable was Actual Use. The measurement scale uses a Likert scale of 1 to 5. The instrument has been tested for validity and reliability. Ensemble learning algorithms used include Random Forest, AdaBoost, XGBoost, Lightgbm, and Catboost, with SHAP applied for model interpretability. Among the models tested, XGBoost achieved the highest predictive accuracy. SHAP analysis revealed that Enjoyment was the most significant factor influencing OPAC acceptance. These results demonstrate the effectiveness of interpretable ensemble models in predicting technology acceptance and suggest their potential as an alternative to data analysis methods. OPAC development can be done by improving the user interface and developing applications on Android.
Keywords
Full Text:
DOWNLOAD [PDF]References
Adjei, S., Kojo Agyeman, I., Adetsi, P., & Agyei, F. O. (2024). Usage of Online Public Access to Catalogue (OPAC) by Library Users in Catholic University College, Ghana. Asian Journal of Information Science and Technology, 14(1), 40–46. https://doi.org/10.70112/ajist-2024.14.1.4253
Afridar, H., Nurul Fadilah, & Aang Alim Murtopo. (2022). Tinjauan Pustaka Sistematis: Penerapan Metode Opac (Online Public Access Catalogue) Pada Sistem Temu Balik Informasi. Jurnal Publikasi Teknik Informatika, 1(3), 79–87. https://doi.org/10.55606/jupti.v1i3.590
Akano, T. T., & James, C. C. (2022). An assessment of ensemble learning approaches and single-based machine learning algorithms for the characterization of undersaturated oil viscosity. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 149. https://doi.org/10.1186/s43088-022-00327-8
Alizamir, M., Wang, M., Ikram, R. M. A., Gholampour, A., Ahmed, K. O., Heddam, S., & Kim, S. (2025). An interpretable XGBoost-SHAP machine learning model for reliable prediction of mechanical properties in waste foundry sand-based eco-friendly concrete. Results in Engineering, 25(February), 104307. https://doi.org/10.1016/j.rineng.2025.104307
Alqudah, A. A., Al-Emran, M., & Shaalan, K. (2021). Technology acceptance in healthcare: A systematic review. Applied Sciences (Switzerland), 11(22), 10573. https://doi.org/10.3390/app112210537
Ardyawin, I., & Afrina, C. (2023). Efektivitas Pelayanan Menggunakan OPAC (Online Public Accses Catalog) Dalam Meningkatkan Aksesibilitas Informasi Bagi Masyarakat. JIPI (Jurnal Ilmu Perpustakaan Dan Informasi), 8(1), 102. https://doi.org/10.30829/jipi.v8i1.14002
Bulagang, A. F., Weng, N. G., Mountstephens, J., & Teo, J. (2020). A review of recent approaches for emotion classification using electrocardiography and electrodermography signals. Informatics in Medicine Unlocked, 20, 100363. https://doi.org/10.1016/j.imu.2020.100363
Cha, G. W., Moon, H. J., & Kim, Y. C. (2021). Comparison of random forest and gradient boosting machine models for predicting demolition waste based on small datasets and categorical variables. International Journal of Environmental Research and Public Health, 18(16), 8530. https://doi.org/10.3390/ijerph18168530
Chang, W., Wang, X., Yang, J., & Qin, T. (2023). An Improved CatBoost-Based Classification Model for Ecological Suitability of Blueberries. Sensors, 23(4), 1811. https://doi.org/10.3390/s23041811
Cheng, Q., Chunhong, Z., & Qianglin, L. (2023). Development and application of random forest regression soft sensor model for treating domestic wastewater in a sequencing batch reactor. Scientific Reports, 13(1), 1–15. https://doi.org/10.1038/s41598-023-36333-8
Chung, D., Jeong, P., Kwon, D., & Han, H. (2023). Technology acceptance prediction of robo-advisors by machine learning. Intelligent Systems with Applications, 18(January 2022), 200197. https://doi.org/10.1016/j.iswa.2023.200197
Ding, Y., Zhu, H., Chen, R., & Li, R. (2022). An Efficient AdaBoost Algorithm with the Multiple Thresholds Classification. Applied Sciences (Switzerland), 12(12), 5872. https://doi.org/10.3390/app12125872
Feretzakis, G., Sakagianni, A., Anastasiou, A., Kapogianni, I., Bazakidou, E., Koufopoulos, P., Koumpouros, Y., Koufopoulou, C., Kaldis, V., & Verykios, V. S. (2024). Integrating Shapley Values into Machine Learning Techniques for Enhanced Predictions of Hospital Admissions. Applied Sciences (Switzerland), 14(13), 5925. https://doi.org/10.3390/app14135925
Fernanda, J. W., Luthifiana, V., & Akhyar, M. K. (2022). Analisis Partial Least Square Structural Equation Model (PLS-SEM) untuk Pemodelan Penerimaan Sistem Jaringan Informasi Bersama Antar Sekolah (JIBAS). J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 15(2), 292–297. https://doi.org/10.36456/jstat.vol15.no2.a6436
Geeitha, S., Ravishankar, K., Cho, J., & Easwaramoorthy, S. V. (2024). Integrating cat boost algorithm with triangulating feature importance to predict survival outcome in recurrent cervical cancer. Scientific Reports, 14(1), 1–19. https://doi.org/10.1038/s41598-024-67562-0
He, Y., Yang, B., & Chu, C. (2024). GA-CatBoost-Weight Algorithm for Predicting Casualties in Terrorist Attacks: Addressing Data Imbalance and Enhancing Performance. Mathematics, 12(6), 818. https://doi.org/10.3390/math12060818
Hidayah, N., & Fernanda, J. W. (2021). Analisis Penerimaan Aplikasi Pembelajaran Online Menggunakan Technology Acceptance Model 3 Dan Partial Least Square Structural Equation Model (Pls-Sem). Factor M, 3(2), 161–172. https://doi.org/10.30762/factor-m.v3i2.3097
Imani, M., Beikmohammadi, A., & Arabnia, H. R. (2025). Comprehensive Analysis of Random Forest and XGBoost Performance with SMOTE, ADASYN, and GNUS Under Varying Imbalance Levels. Technologies, 13(3), 1–40. https://doi.org/10.3390/technologies13030088
Laftah, R. H., & Al-Saedi, K. H. K. (2024). Explainable Ensemble Learning Models for Early Detection of Heart Disease. Journal of Robotics and Control (JRC), 5(5), 1412–1421. https://doi.org/10.18196/jrc.v5i5.22448
Lamane, H., Mouhir, L., Moussadek, R., Baghdad, B., Kisi, O., & El Bilali, A. (2024). Interpreting machine learning models based on SHAP values in predicting suspended sediment concentration. International Journal of Sediment Research, 40(1), 91–107. https://doi.org/10.1016/j.ijsrc.2024.10.002
Miller, C., Portlock, T., Nyaga, D. M., & O’Sullivan, J. M. (2024). A review of model evaluation metrics for machine learning in genetics and genomics. Frontiers in Bioinformatics, 4(September), 1–13. https://doi.org/10.3389/fbinf.2024.1457619
Nirwana, Anwar, & Arfan, H. H. (2021). Pengaruh Penggunaan Online Public Access Catalogue (Opac) Terhadap Kepuasan Pemustaka Di Dinas Perpustakaan Dan Kearsipan Kabupaten Bulukumba. Jurnal Magister Manajemen Nobel Indonesia, Volume 2(April), page 309-323. https://e-jurnal.nobel.ac.id/index.php/JMMNI/article/view/1199
Nwobu, B. K., & George, E. S. (2024). Access to information resources using the online public access catalogue (opac) in the 21st century. The Catalyst Journal of Library and Information Literacy, 3(1), 140–153. https://journals.journalsplace.org/index.php/CJLIL/article/view/539
Rahayu, S., & Sayekti, R. (2023). Analisis Penerimaan Sistem Open Public Access Catalog (OPAC) di Perpustakaan Universitas Medan Area Menggunakan Technology Acceptance Model (TAM). Jurnal Teknologi Sistem Informasi Dan Aplikasi, 6(3), 494–504. https://doi.org/10.32493/jtsi.v6i3.32032
Rai, P., Kumar, P., Al-Ansari, N., & Malik, A. (2022). Evaluation of Machine Learning Versus Empirical Models for Monthly Reference Evapotranspiration Estimation in Uttar Pradesh and Uttarakhand States, India. Sustainability (Switzerland), 14(10), 5771. https://doi.org/10.3390/su14105771
Ramalingam, K., Yadalam, P. K., Ramani, P., Krishna, M., Hafedh, S., Badnjević, A., Cervino, G., & Minervini, G. (2024). Light gradient boosting-based prediction of quality of life among oral cancer-treated patients. BMC Oral Health, 24(1), 1–8. https://doi.org/10.1186/s12903-024-04050-x
Rihidima, L. V. C., Abdillah, Y., & Rahimah, A. (2022). Adoption of Cash on Delivery Payment Method in E-commerce Shopping: A Value-based Adoption Model Approach. Jurnal Manajemen Teori Dan Terapan | Journal of Theory and Applied Management, 15(3), 347–360. https://doi.org/10.20473/jmtt.v15i3.38964
Santini, F. de O., Sampaio, C. H., Rasul, T., Ladeira, W. J., Kar, A. K., Perin, M. G., & Azhar, M. (2025). Understanding students’ technology acceptance behaviour: A meta-analytic study. Technology in Society, 81, 102798. https://doi.org/https://doi.org/10.1016/j.techsoc.2024.102798
Setiya Putra, Y. W. (2023). Implementasi Model TAM pada Sistem Informasi Presensi Online Menggunakan Face Recognition dan GPS. Journal of Applied Computer Science and Technology, 4(2), 147–154. https://doi.org/10.52158/jacost.v4i2.577
Shahani, N. M., Zheng, X., Liu, C., Hassan, F. U., & Li, P. (2021). Developing an XGBoost Regression Model for Predicting Young’s Modulus of Intact Sedimentary Rocks for the Stability of Surface and Subsurface Structures. Frontiers in Earth Science, 9(October), 1–13. https://doi.org/10.3389/feart.2021.761990
Su, W., Jiang, F., Shi, C., Wu, D., Liu, L., Li, S., Yuan, Y., & Shi, J. (2023). An XGBoost-Based Knowledge Tracing Model. International Journal of Computational Intelligence Systems, 16(1), 13. https://doi.org/10.1007/s44196-023-00192-y
Suyanto. (2022). Kinerja Keuangan Usaha Mikro Kecil dan Menengah (UMKM): Inklusi Keuangan sebagai Mediasi. Jurnal Akuntansi Dewantara, 6(1), 1–20. https://doi.org/https://doi.org/10.26460/ad.v6i1
Tang, S. (2024). The box office prediction model based on the optimized XGBoost algorithm in the context of film marketing and distribution. PloS One, 19(10), e0309227. https://doi.org/10.1371/journal.pone.0309227
Tarwidi, D., Pudjaprasetya, S. R., Adytia, D., & Apri, M. (2023). An optimized XGBoost-based machine learning method for predicting wave run-up on a sloping beach. MethodsX, 10(March), 102119. https://doi.org/10.1016/j.mex.2023.102119
Velarde, G., Weichert, M., Deshmunkh, A., Deshmane, S., Sudhir, A., Sharma, K., & Joshi, V. (2024). Tree boosting methods for balanced and imbalanced classification and their robustness over time in risk assessment. Intelligent Systems with Applications, 22(March), 200354. https://doi.org/10.1016/j.iswa.2024.200354
Wang, C., Ahmad, S. F., Bani Ahmad Ayassrah, A. Y. A., Awwad, E. M., Irshad, M., Ali, Y. A., Al-Razgan, M., Khan, Y., & Han, H. (2023). An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon, 9(8), e18349. https://doi.org/10.1016/j.heliyon.2023.e18349
Widyarini, L. A. (2022). Analisis Pengaruh Value Based Adoption Model Terhadap Niat Konsumen Untuk Menggunakan Wearable Technology - Smart Watch Di Indonesia Pada Masa Pandemi Covid-19. Jwm (Jurnal Wawasan Manajemen), 9(2), 156–168. https://doi.org/10.20527/jwm.v9i2.26
DOI: https://doi.org/10.31764/jtam.v9i3.30262
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jerhi Wahyu Fernanda, Iskandar Tsani, Anisya Nuraini

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: