Spatial Fuzzy Clustering Algorithm for Optimizing Inclusive Da'wah Distribution Patterns
Abstract
This article aims to identify and analyse the potential for inclusive da'wah in Central Java Province, Indonesia, by focusing on three fundamental aspects that determine the success of the da'wah process: the subject, the object, and the environment of the da'wah. This research applies an empirical approach through a series of spatial clustering analyses using the fuzzy geographically weighted clustering (FGWC) method to determine the optimum number of clusters in mapping the potential for da'wah. FGWC is a spatial analysis method that combines the concept of fuzzy clustering with a geographically weighted approach, allowing for more flexible and contextual identification of distribution patterns based on location. This method was chosen for its ability to handle uncertainty in spatial data as well as considering geographical variations in clustering. The data used in this study came from the Ministry of Religious Affairs of the Republic of Indonesia and the Central Statistics Agency (BPS) of Central Java Province, covering demographic, social, and religious data from 35 districts/cities in Central Java. The results of the FGWC analysis show that the optimum number of clusters is two, with districts/cities in the second cluster identified as having higher da’wah potential. This is evidenced by six high-value variables in the second cluster, while the first cluster has only one high-value variable. These findings have significant implications for inclusive da'wah strategies in Central Java. These results can be used as a strategy for mapping priority da'wah areas, allocating effective resources, and developing a more contextualised da'wah approach according to the characteristics of each cluster. This research's originality lies in applying the FGWC method in the context of da'wah mapping. This article is the first to combine spatial analysis with a study of the potential for inclusive da'wah, thus contributing to developing an interdisciplinary approach in the study of contemporary Islam in Indonesia.
Keywords
Full Text:
DOWNLOAD [PDF]References
Abdul Salam Noh Se Ik, Syaikhoni Jazuli, Rohmah, S., & Nur Chanifah. (2024). Principles of Islam and Social Integration. Peradaban Journal of Religion and Society, 3(1), 18–32. https://doi.org/10.59001/pjrs.v3i1.146
Amin, J. J. A. (2012). Cultural landscapes of Java. In Managing Cultural Landscapes 1st Edition. Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9780203128190-6/cultural-landscapes-java-jusna-amin
asmar, afidatul, & Perdana, D. A. (2024). Dakwah Dan Radikalisme (Pendekatan Pemahaman Mitra Dakwah). Journal of Islamic Management, 4(1), 25–37. https://doi.org/10.15642/JIM.V4I1.1571
Astuti, C. C., & Untari, R. S. (2017). Applied Hierarchical Cluster Analysis with Average Linkage Algoritm. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 5(1), 1–7. https://doi.org/10.18860/ca.v5i1.3862
Bharill, N., & Tiwari, A. (2014). Enhanced cluster validity index for the evaluation of optimal number of clusters for Fuzzy C-Means algorithm. 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 2014, pp. 1526-1533. doi: 10.1109/FUZZ-IEEE.2014.6891591
Carbone, A., & Ponta, L. (2022). Relative cluster entropy for power-law correlated sequences. SciPost Physics, 13(3), 1–11. https://doi.org/10.21468/SciPostPhys.13.3.076
Dahiya, S., Gosain, A., & Mann, S. (2021). Experimental analysis of fuzzy clustering algorithms. In: Satapathy, S., Zhang, YD., Bhateja, V., Majhi, R. (eds) Intelligent Data Engineering and Analytics. Advances in Intelligent Systems and Computing, vol 1177. Springer, Singapore. https://doi.org/10.1007/978-981-15-5679-1_29
Doan, H., & Nguyen, D. (2018). A method for finding the appropriate number of clusters. International Arab Journal of Information Technology, 15(4), 675–682. https://www.iajit.org/PDF/July 2018, No. 4/9993.pdf
Doya, H. (2020). Nilai-Nilai Humanisme dalam Novel 99 Cahaya di Langit Eropa. Journal of Islamic Theology and Philosophy, 2(2), 111-120. https://doi.org/10.24042/ijitp.v2i2.6507
Eustáquio, F., & Nogueira, T. (2020). Evaluating the numerical instability in fuzzy clustering validation of high-dimensional data. Theoretical Computer Science, 805, 19–36. https://doi.org/10.1016/j.tcs.2019.10.039
Ferraro, M. B. (2024). Fuzzy k-Means: history and applications. Econometrics and Statistics, 30, 110–123. https://doi.org/10.1016/j.ecosta.2021.11.008
Gowda, S., Nandan, C. S., Jayaram, M. A., Gupta, A., & Jaya, R. S. (2024). Unsupervised Clustering of Asphalt Pavement Conditions Using Fuzzy C-Means Algorithm with Principal Component Analysis Aided Dimensionality Reduction. In: Verma, O.P., Wang, L., Kumar, R., Yadav, A. (eds) Machine Intelligence for Research and Innovations. MAiTRI 2023. Lecture Notes in Networks and Systems, vol 831. Springer, Singapore. https://doi.org/10.1007/978-981-99-8135-9_4
Grekousis, G. (2021a). Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation. International Journal of Geographical Information Science, 35(1), 152–174. https://doi.org/10.1080/13658816.2020.1808221
Grekousis, G. (2021b). Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation. International Journal of Geographical Information Science, 35(1), 152–174. https://doi.org/10.1080/13658816.2020.1808221
Guo, L., Chen, L., Lu, X., & Chen, C. L. P. (2020). Membership affinity lasso for fuzzy clustering. IEEE Transactions on Fuzzy Systems, 28(2), 294–307. https://doi.org/10.1109/TFUZZ.2019.2905114
Hadi, B. S. (2017). Pendekatan Modified Particle Swarm Optimization dan Artificial Bee Colony Pada Fuzzy Geographically Weighted Clustering. Institut Teknologi Sepuluh Nopember. https://repository.its.ac.id/2721/
Hasan, I. K., Nurwan, Nur Falaq, & Muhammad Rezky Friesta Payu. (2023). Optimization Fuzzy Geographically Weighted Clustering with Gravitational Search Algorithm for Factors Analysis Associated with Stunting. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(1), 120–128. https://doi.org/10.29207/resti.v7i1.4508
Hauser, A. (2012). Da‘wah: Islamic Mission and Its Current Implications. International Bulletin of Missionary Research, 36(4), 189–194. https://doi.org/10.1177/239693931203600405
Hibrizi, A. N. (2024). Unsur-Unsur Komunikasi dalam Dakwah Rasulullah SAW dan Implementasi Strategi Dakwah Rasulullah di Era Digital. Meyarsa: Jurnal Ilmu Komunikasi Dan Dakwah, 5(2), 116–126. https://doi.org/10.19105/MEYARSA.V5I2.15260
Ismail, A. I., & Uyuni, B. (2020). The New Perspective of Interfaith Dialogue as Da’wah Approach in Global Era. Journal of Xidian University, 14(3), 1540–1552. https://repository.uinjkt.ac.id/dspace/handle/123456789/50860
Japar, M., Sahid, K., & Fadhillah, D. N. (2019). Social tolerance in multi-religious states: A case study in cigugur society, Indonesia. International Journal of Innovation, Creativity and Change, 7(7), 371-392. https://www.ijicc.net/images/vol7iss7/7718_Japar_2019_E_R.pdf
Kadri. (2022). Religion and Tourism: Promoting Inclusive Islam in Lombok Island, Indonesia. Studia Islamika, 29(2), 333–357. https://doi.org/10.36712/SDI.V29I2.14471
Kanzawa, Y. (2020). Generalization property of fuzzy classification function for tsallis entropy-regularization of bezdek-type fuzzy c-means clustering. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 12256 LNAI. https://doi.org/10.1007/978-3-030-57524-3_10
Karim, A., Adeni, A., Fitri, F., Fitri, A. N., Hilmi, M., Fabriar, S. R., & Rachmawati, F. (2021). Pemetaan untuk Strategi Dakwah di Kota Semarang Menggunakan Pendekatan Data Mining (Mapping for Da’wah Strategy in Semarang City Using Data Mining Approach). Jurnal Dakwah Risalah, 32(1), 40-55. https://doi.org/10.24014/jdr.v32i1.12549
Karim, A., & Riyadi, A. (2024). Analyzing big data of da’wah manuscripts based on Dimensions: Mapping research on da’wah on social media. Jurnal Ilmu Dakwah, 44(1), 1–14. https://doi.org/10.21580/JID.V44.1.22073
Khasanah, S. U. (2022). Nahdlatul Ulama Da’wah Dynamics: Socio-Cultural Change and Disruption. KOMUNIKA: Jurnal Dakwah Dan Komunikasi, 16(2), 183–199. https://doi.org/10.24090/komunika.v16i2.6810
Koltcov, S., Ignatenko, V., & Pashakhin, S. (2020). How Many Clusters? An Entropic Approach to Hierarchical Cluster Analysis. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2020. Advances in Intelligent Systems and Computing, vol 1230. Springer, Cham. https://doi.org/10.1007/978-3-030-52243-8_40
Kurniawan, R., & Haqiqi, B. N. (2015). Pengelompokan Menggunakan Metode Substractive Fuzzy C-Means (SFCM), Studi Kasus Demam Berdarah di Jawa Timur. Jurnal Statistika, 3(2), 22-30. https://doi.org/10.26714/jsunimus.3.2.2015.%25p
Liao, Z. X., & Peng, W. C. (2012). Clustering spatial data with a geographic constraint: Exploring local search. Knowledge and Information Systems, 31(1), pages 153–170. https://doi.org/10.1007/s10115-011-0402-8
Mahamadou, A. J. D., Antoine, V., Nguifo, E. M., & Moreno, S. (2020). Categorical fuzzy entropy c-means. IEEE International Conference on Fuzzy Systems, 2020-July. https://doi.org/10.1109/FUZZ48607.2020.9177666
Mahmuddin, Hj.Ab Rahman, A., Haris, A., Citra Haris, A. T., & Hadriaty. (2018). Da’wah strategy in strengthening the community’s economy in Bira village Bulukumba regency, Indonesia. International Journal of Civil Engineering and Technology, 9(116–122), 116–122. https://iaeme.com/Home/article_id/IJCIET_09_12_015
Marfu’ah, U. (2018). Strategi Komunikasi Dakwah Berbasis Multikultural. Islamic Communication Journal, 2(2), 147–161. https://doi.org/10.21580/icj.2017.2.2.2166
Muh Aditya Ibrahim, Eri R Hidayat, Halomoan FS Alexandra, Pujo Widodo, & Herlina JR Saragih. (2023). Horizontal Conflict Resolution Related to Belief in Religious Tolerance in Multi-Cultural Society in Indonesia. International Journal Of Humanities Education and Social Sciences (IJHESS), 2(6), 1925–1929. https://doi.org/10.55227/ijhess.v2i6.525
Muranishi, M., Honda, K., & Notsu, A. (2014). Xie-beni-type fuzzy cluster validation in fuzzy co-clustering of documents and keywords. In: Cho, Y., Matson, E. (eds) Soft Computing in Artificial Intelligence. Advances in Intelligent Systems and Computing, vol 270, 29-38. Springer, Cham. https://doi.org/10.1007/978-3-319-05515-2_4
Nasution, B. I., & Siregar, S. I. (2022). Regional Economy Condition in Indonesia during COVID-19 Pandemic: An Analysis using Teaching Learning-Based Fuzzy Geodemographic Clustering. 2022 1st International Conference on Information System and Information Technology, ICISIT 2022, 37–42. https://doi.org/10.1109/ICISIT54091.2022.9873033
Nurjanah. (2024). SERVING AS A ROLE MODEL Historical Perspectives on Muhammadiyah’s Multicultural Da‘wa Towards Chinese Indonesians, 1960–1970. Journal of Indonesian Islam, 18(2), 558–578. https://doi.org/10.15642/JIIS.2024.18.2.558-578
Popkov, Y. S., Dubnov, Y. A., & Popkov, A. Y. (2022). Entropy-Randomized Clustering. Mathematics, 10(19), 1–15. https://doi.org/10.3390/math10193710
Riyadi, A., & Karim, A. (2023). Da’wah bil-hikmah: Tracing Sunan Kalijaga’s footsteps in the transformation of Islamic society. Jurnal Ilmu Dakwah, 43(2), 281–296. https://doi.org/10.21580/JID.V43.2.18468
Riyadi, A., Sulistio, S., & Karim, A. (2024). Social Harmony through Local Wisdom: Da’wah in the Kalang Obong Tradition. Jurnal Dakwah Risalah, 35(1), 68–86. https://doi.org/10.24014/JDR.V35I1.29909
Rosmalina, A., & Khaerunnisa, T. (2021). Media Sosial Sebagai Alat Komunikasi Dakwah Pada Masa Pandemi. ORASI: Jurnal Dakwah Dan Komunikasi, 12(1), 147-160. https://doi.org/10.24235/orasi.v12i1.8205
Setyoningrum, D. U., Warella, Y., & Yuningsih, T. (2021). Analysis of risks and challenges to demographic bonuses in sustainable development programs through population policy transformation (case study in Central Java Province). IOP Conference Series: Earth and Environmental Science, 623(1), 012088. https://doi.org/10.1088/1755-1315/623/1/012088
Shehu, F. (2017). Methodology of Prophetic Da‘wah and Its Relevance to Contemporary Global Society. Journal of Education and Social Sciences, 6, 9–16. https://jesoc.com/wp-content/uploads/2017/03/JESOC-30.pdf
Singh, M., Bhattacharjee, R., Sharma, N., & Verma, A. (2017). An improved xie-beni index for cluster validity measure. 2017 4th International Conference on Image Information Processing, ICIIP 2017, 2018-January, 95–99. https://doi.org/10.1109/ICIIP.2017.8313691
Suherman, Y. N., & Rustandi, H. (2023). Dakwah Inklusif Kontemporer Nurcholis Madjid. Journal of Islamic Social Science and Communication, 2(1), 33-42. https://doi.org/10.54801/jisscdiksi.v2i01.179
Sumargo, B., Kurniawan, R., Nasution, B. I., Firmansyah, A., Laksono, B. C., Gio, P. U., Isnaeni, M. A., Yusuf, M., & Tarigan, V. C. E. (2024). Green Infrastructure Vulnerability and Regional Poverty Reduction: New Sustainable Development Recommendations Based on a Spatial Clustering Approach. Journal of Poverty. July 2024, 1-24. https://doi.org/10.1080/10875549.2024.2379769
Suriati, Burhanuddin, & Nur, M. J. (2020). Da’wah in Form of Ukhuwah Islamiyah. Proceedings of the 1st Borobudur International Symposium on Humanities, Economics and Social Sciences (BIS-HESS 2019). 941–946. https://doi.org/10.2991/assehr.k.200529.198
Suzuki, Y., & Kanzawa, Y. (2025). Tsallis Entropy-Regularized Fuzzy Classification Maximum Likelihood Clustering with a t-Distribution. Journal of Advanced Computational Intelligence and Intelligent Informatics, 29(2), 365–378. https://doi.org/10.20965/jaciii.2025.p0365
Tavakkol, B., Choi, J., Jeong, M. K., & Albin, S. L. (2022). Object-based cluster validation with densities. Pattern Recognition, Vol.121, 1-14. https://doi.org/10.1016/j.patcog.2021.108223
Tomašev, N., & Radovanović, M. (2016). Clustering evaluation in high-dimensional data. In: Celebi, M., Aydin, K. (eds) Unsupervised Learning Algorithms. Springer, Cham. pp 71–107. https://doi.org/10.1007/978-3-319-24211-8_4
Wawaysadhya, W., Oktafiani, T. U., Olivia, P. L. D., & Baruzzaman, M. (2022). Moderasi Beragama di Media Sosial: Narasi Inklusivisme dalam Dakwah. AL MUNIR : Jurnal Komunikasi Dan Penyiaran Islam, 13(02), 118–132. https://doi.org/10.15548/AMJ-KPI.V13I02.4601
Wijayanto, A. W., Purwarianti, A., & Son, L. H. (2016). Fuzzy geographically weighted clustering using artificial bee colony: An efficient geo-demographic analysis algorithm and applications to the analysis of crime behavior in population. Applied Intelligence, 44(2), 377–398. https://doi.org/10.1007/s10489-015-0705-7
Zamakhsyari Baharuddin, A., & Tinggi Agama Islam Negeri Majene, S. (2020). Dakwah Inklusif dalam Kerangka Maqāṣid Al-Sharī’ah: Studi Kasus Pola Interaksi Lintas Agama pada Masyarakat Kalukku (Inclusive Dakwah in The Framework of Maqāṣid Al-Sharī’ah: A Case Study of Cross-Religious Interaction Patterns in Kalukku Community). Jurnal Dakwah Risalah, 31(2), 199–219. https://doi.org/10.24014/JDR.V31I2.11114
Zeng, X., Wang, S., Li, Q., Ruan, S., Yang, Q., & Xu, H. (2025). Highly improve the accuracy of clustering algorithms based on shortest path distance. Information Sciences, Vol 710, 1-25. https://doi.org/10.1016/j.ins.2025.122087
Zuhdi, M. H., Saleh, M., Abdullah, M. N., Mujib, L. S. Bin, & ... (2017). Peta Dakwah Majelis Ulama Indonesia Nusa Tenggara Barat. Sanabil, Mataram. ISBN 978-602-6223-55-5
DOI: https://doi.org/10.31764/jtam.v9i3.30599
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Abdul Karim, Adeni, Agus Riyadi, Achmad Yafik Mursyid

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: