Modeling Spatio-Temporal Precipitation Patterns in East Kalimantan using Space-Time Kriging and Median Polish-Based Spatio-Temporal Kriging

Friendtika Miftaqul Jannah, Rahma Fitriani, Henny Pramoedyo

Abstract


Precipitation variability presents significant challenges for disaster risk reduction and water resource management, particularly in flood and drought-prone regions such as East Kalimantan. This study aims to develop and evaluate two statistical approaches for spatio-temporal precipitation modeling: spatio-temporal kriging (ST-Kriging) and spatio-temporal median polish kriging (ST-MPK). Using monthly precipitation data obtained from seven observation stations provided by BMKG and BPS for the period 2021 to 2023, both models were assessed using performance metrics. ST-Kriging employed a simple sum-metric semivariogram model that combines exponential spatial and Gaussian temporal components. This model achieved an RMSE of 84.05, MAE of 69.95, and MAPE of 52.67%. Meanwhile, ST-MPK model, incorporating robust median polish decomposition and ST-Kriging of residuals, produced a lower MAPE of 44.83% with higher RMSE (122.44) and MAE (91.35). This suggests that while ST-Kriging offers better absolute error performance, ST-MPK provides greater relative accuracy and improved robustness to outliers, critical advantages for modeling precipitation in regions undergoing environmental shifts, where anomalies and extremes are increasingly common. These findings highlight ST-MPK’s potential to produce more reliable forecasts under irregular precipitation conditions, supporting early warning systems and informed water resource planning. Scientifically, this research contributes a robust modeling framework suitable for data-scarce and outlier-prone contexts. Practically, it can aid policymakers in designing adaptive flood mitigation strategies and sustainable water management policies tailored to the evolving climate realities of East Kalimantan.

Keywords


Kriging; Precipitation Modeling; Prediction Accuracy; Spatio-Temporal.

Full Text:

DOWNLOAD [PDF]

References


Abdullah, A. S., Matoha, S., Lubis, D. A., Falah, A. N., Jaya, I. G. N. M., Hermawan, E., & Ruchjana, B. N. (2018). Implementation of Generalized Space Time Autoregressive (GSTAR)-Kriging model for predicting rainfall data at unobserved locations in West Java. Applied Mathematics and Information Sciences, 12(3), 607–615. https://doi.org/10.18576/amis/120316

Adiguna, I. B. A. P., Nuarsa, I. W., & Puspitha, N. L. P. R. (2021). Pengaruh Suhu Permukaan Laut terhadap Curah Hujan di Pulau Bali Tahun 2009-2018. Journal of Marine and Aquatic Sciences, 7(2), 214. https://doi.org/10.24843/jmas.2021.v07.i02.p10

Chen, Y., Paschalis, A., Wang, L. P., & Onof, C. (2021). Can we estimate flood frequency with point-process spatial-temporal rainfall models? Journal of Hydrology, 600. https://doi.org/10.1016/j.jhydrol.2021.126667

De Carvalho, J. R. P., Nakai, A. M., & Monteiro, J. E. B. A. (2016). Modelagem espaço temporal para imputação de dados para séries de precipitação diária em zonas homogêneas. Revista Brasileira de Meteorologia, 31(2), 196–201. https://doi.org/10.1590/0102-778631220150025

Islam, N., Kashem, A., Das, P., Ali, M. N., & Paul, S. (2024). Prediction of high-performance concrete compressive strength using deep learning techniques. Asian Journal of Civil Engineering, 25(1), 327–341. https://doi.org/10.1007/s42107-023-00778-z

Jannah, F. M., Fitriani, R., & Pramoedyo, H. (2025). Spatio-Temporal Median Polish Kriging with ARIMA Integration for Monthly Precipitation Interpolation in East Kalimantan. JTAM Journal, 9(2), 568–586. https://doi.org/https://doi.org/10.31764/jtam.v9i2.29570

Katipoğlu, O. M. (2022). Spatial analysis of seasonal precipitation using various interpolation methods in the Euphrates basin, Turkey. Acta Geophysica, 70(2), 859–878. https://doi.org/10.1007/s11600-022-00756-0

Liu, P., & Tung, Y. K. (2020). Spatial interpolation of rain-field dynamic time-space evolution based on radar rainfall data. Hydrology Research, 51(3), 521–540. https://doi.org/10.2166/nh.2020.115

Martínez, W. A., Melo, C. E., & Melo, O. O. (2017). Median Polish Kriging for space–time analysis of precipitation. Spatial Statistics, 19(1), 1–20. https://doi.org/10.1016/j.spasta.2016.10.003

Montero, J.-M., Fernández-Avilés, G., & Mateu, J. (2015). Spatial and Spatio-Temporal Geostatistical Modeling and Kriging (1st ed.). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118762387

Murthy, V., & Okunade, A. (2018). Is the health care price inflation in US urban areas stationary?: Evidence from panel unit root tests. Journal of Economics, Finance and Administrative Science, 23(44), 77–94. https://doi.org/10.1108/JEFAS-02-2017-0043

Olanrewaju, R., Ekiotuasinghan, B., & Akpan, G. (2017). Analysis of rain fall pattern and flood incidences in Warri metropolis, Nigeria. Geography, Environment, Sustainability, 10(4), 83–97. https://doi.org/10.24057/2071-9388-2017-10-4-83-97

O’Leary, B., Reiners, J. J., Xu, X., & Lemke, L. D. (2016). Identification and influence of spatio-temporal outliers in urban air quality measurements. Science of The Total Environment, 573(1), 55–65. https://doi.org/10.1016/j.scitotenv.2016.08.031

Pertiwi, M. A., Kahar, S., Sasmito, B., & Marpaung, S. (2015). Analisis Korelasi Suhu Permukaan Laut Terhadap Curah Hujan dengan Metode Penginderaan Jauh Tahun 2012-2013 (Studi Kasus : Kota Semarang). Jurnal Geodesi Undip Januari, 4(1), 61–71. https://doi.org/https://doi.org/10.14710/jgundip.2015.7639

Raja, N. B., Aydin, O., Türkoğlu, N., & Çiçek, I. (2017). Space-time kriging of precipitation variability in Turkey for the period 1976–2010. Theoretical and Applied Climatology, 129(1–2), 293–304. https://doi.org/10.1007/s00704-016-1788-8

Rohma, N. N., Pramoedyo, H., & Astutik, S. (2023). Perbandingan Pendugaan Metode Ordinary Kriging dan Metode Ordinary Kriging dengan Teknik Jackknife. MAp (Mathematics and Applications) Journal, 2(4), 101–111. https://doi.org/https://doi.org/10.15548/map.v4i2.4736

Ruslana, Z. N., Prihatin, R. S., Sulistiyowati, S., & Nugroho, K. (2024). Application of the Arima Method to Prediction Maximum Rainfall at Central Java Climatological Station. Sinkron, 8(4), 2135–2141. https://doi.org/10.33395/sinkron.v8i4.13984

Sari, F. P., & Atsidiqi, S. N. (2020). Investigasi Pengaruh Skenario Modifikasi Urbanisasi pada Perubahan Hujan di Kota Makassar. Prosiding SNFA (Seminar Nasional Fisika Dan Aplikasinya), 5(1), 85–96. https://doi.org/10.20961/prosidingsnfa.v5i0.46597

Shand, L., & Li, B. (2017). Modeling nonstationarity in space and time. Biometrics, 73(3), 759–768. https://doi.org/10.1111/biom.12656

Sudinda, T. W. (2020). Pemanfaatan Air Hujan untuk Memenuhi Kebutuhan Air Baku Jangka Panjang Ibu Kota Negara. Construction Engineering and Sustainable Development, 3(1), 1–48. https://www.e-journal.trisakti.ac.id/index.php/sipil/article/view/13654

Sun, Y., & Genton, M. G. (2012). Functional Median Polish. Journal of Agricultural, Biological, and Environmental Statistics, 17(3), 354–376. https://doi.org/10.1007/s13253-012-0096-8

Tutmez, B. (2014). Analyzing non-stationarity in cement stone pit by median polish interpolation: a case study. Journal of Applied Statistics, 41(2), 454–466. https://doi.org/10.1080/02664763.2013.840274

Varouchakis, E. A., Hristopulos, D. T., Karatzas, G. P., Perez, G. A. C., & Diaz, V. (2021). Spatiotemporal geostatistical analysis of precipitation combining ground and satellite observations. Hydrology Research, 52(3), 804–820. https://doi.org/10.2166/nh.2021.160

Verdin, A., Funk, C., Rajagopalan, B., & Kleiber, W. (2016). Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems. IEEE Transactions on Geoscience and Remote Sensing, 54(5), 2552–2562. https://doi.org/10.1109/TGRS.2015.2502956

Yang, X., Yang, Y., Li, K., & Wu, R. (2020). Estimation and characterization of annual precipitation based on spatiotemporal kriging in the Huanghuaihai basin of China during 1956–2016. Stochastic Environmental Research and Risk Assessment, 34(9), 1407–1420. https://doi.org/10.1007/s00477-019-01757-0

Zhang, W., Liu, D., Zheng, S., Liu, S., Loáiciga, H. A., & Li, W. (2020). Regional precipitation model based on geographically and temporally weighted regression kriging. Remote Sensing, 12(16), 1–19. https://doi.org/10.3390/RS12162547




DOI: https://doi.org/10.31764/jtam.v9i3.30642

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Friendtika Miftaqul Jannah, Rahma Fitriani, Henny Pramoedyo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: