Modeling Spatio-Temporal Precipitation Patterns in East Kalimantan using Space-Time Kriging and Median Polish-Based Spatio-Temporal Kriging
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Abdullah, A. S., Matoha, S., Lubis, D. A., Falah, A. N., Jaya, I. G. N. M., Hermawan, E., & Ruchjana, B. N. (2018). Implementation of Generalized Space Time Autoregressive (GSTAR)-Kriging model for predicting rainfall data at unobserved locations in West Java. Applied Mathematics and Information Sciences, 12(3), 607–615. https://doi.org/10.18576/amis/120316
Adiguna, I. B. A. P., Nuarsa, I. W., & Puspitha, N. L. P. R. (2021). Pengaruh Suhu Permukaan Laut terhadap Curah Hujan di Pulau Bali Tahun 2009-2018. Journal of Marine and Aquatic Sciences, 7(2), 214. https://doi.org/10.24843/jmas.2021.v07.i02.p10
Chen, Y., Paschalis, A., Wang, L. P., & Onof, C. (2021). Can we estimate flood frequency with point-process spatial-temporal rainfall models? Journal of Hydrology, 600. https://doi.org/10.1016/j.jhydrol.2021.126667
De Carvalho, J. R. P., Nakai, A. M., & Monteiro, J. E. B. A. (2016). Modelagem espaço temporal para imputação de dados para séries de precipitação diária em zonas homogêneas. Revista Brasileira de Meteorologia, 31(2), 196–201. https://doi.org/10.1590/0102-778631220150025
Islam, N., Kashem, A., Das, P., Ali, M. N., & Paul, S. (2024). Prediction of high-performance concrete compressive strength using deep learning techniques. Asian Journal of Civil Engineering, 25(1), 327–341. https://doi.org/10.1007/s42107-023-00778-z
Jannah, F. M., Fitriani, R., & Pramoedyo, H. (2025). Spatio-Temporal Median Polish Kriging with ARIMA Integration for Monthly Precipitation Interpolation in East Kalimantan. JTAM Journal, 9(2), 568–586. https://doi.org/https://doi.org/10.31764/jtam.v9i2.29570
Katipoğlu, O. M. (2022). Spatial analysis of seasonal precipitation using various interpolation methods in the Euphrates basin, Turkey. Acta Geophysica, 70(2), 859–878. https://doi.org/10.1007/s11600-022-00756-0
Liu, P., & Tung, Y. K. (2020). Spatial interpolation of rain-field dynamic time-space evolution based on radar rainfall data. Hydrology Research, 51(3), 521–540. https://doi.org/10.2166/nh.2020.115
Martínez, W. A., Melo, C. E., & Melo, O. O. (2017). Median Polish Kriging for space–time analysis of precipitation. Spatial Statistics, 19(1), 1–20. https://doi.org/10.1016/j.spasta.2016.10.003
Montero, J.-M., Fernández-Avilés, G., & Mateu, J. (2015). Spatial and Spatio-Temporal Geostatistical Modeling and Kriging (1st ed.). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118762387
Murthy, V., & Okunade, A. (2018). Is the health care price inflation in US urban areas stationary?: Evidence from panel unit root tests. Journal of Economics, Finance and Administrative Science, 23(44), 77–94. https://doi.org/10.1108/JEFAS-02-2017-0043
Olanrewaju, R., Ekiotuasinghan, B., & Akpan, G. (2017). Analysis of rain fall pattern and flood incidences in Warri metropolis, Nigeria. Geography, Environment, Sustainability, 10(4), 83–97. https://doi.org/10.24057/2071-9388-2017-10-4-83-97
O’Leary, B., Reiners, J. J., Xu, X., & Lemke, L. D. (2016). Identification and influence of spatio-temporal outliers in urban air quality measurements. Science of The Total Environment, 573(1), 55–65. https://doi.org/10.1016/j.scitotenv.2016.08.031
Pertiwi, M. A., Kahar, S., Sasmito, B., & Marpaung, S. (2015). Analisis Korelasi Suhu Permukaan Laut Terhadap Curah Hujan dengan Metode Penginderaan Jauh Tahun 2012-2013 (Studi Kasus : Kota Semarang). Jurnal Geodesi Undip Januari, 4(1), 61–71. https://doi.org/https://doi.org/10.14710/jgundip.2015.7639
Raja, N. B., Aydin, O., Türkoğlu, N., & Çiçek, I. (2017). Space-time kriging of precipitation variability in Turkey for the period 1976–2010. Theoretical and Applied Climatology, 129(1–2), 293–304. https://doi.org/10.1007/s00704-016-1788-8
Rohma, N. N., Pramoedyo, H., & Astutik, S. (2023). Perbandingan Pendugaan Metode Ordinary Kriging dan Metode Ordinary Kriging dengan Teknik Jackknife. MAp (Mathematics and Applications) Journal, 2(4), 101–111. https://doi.org/https://doi.org/10.15548/map.v4i2.4736
Ruslana, Z. N., Prihatin, R. S., Sulistiyowati, S., & Nugroho, K. (2024). Application of the Arima Method to Prediction Maximum Rainfall at Central Java Climatological Station. Sinkron, 8(4), 2135–2141. https://doi.org/10.33395/sinkron.v8i4.13984
Sari, F. P., & Atsidiqi, S. N. (2020). Investigasi Pengaruh Skenario Modifikasi Urbanisasi pada Perubahan Hujan di Kota Makassar. Prosiding SNFA (Seminar Nasional Fisika Dan Aplikasinya), 5(1), 85–96. https://doi.org/10.20961/prosidingsnfa.v5i0.46597
Shand, L., & Li, B. (2017). Modeling nonstationarity in space and time. Biometrics, 73(3), 759–768. https://doi.org/10.1111/biom.12656
Sudinda, T. W. (2020). Pemanfaatan Air Hujan untuk Memenuhi Kebutuhan Air Baku Jangka Panjang Ibu Kota Negara. Construction Engineering and Sustainable Development, 3(1), 1–48. https://www.e-journal.trisakti.ac.id/index.php/sipil/article/view/13654
Sun, Y., & Genton, M. G. (2012). Functional Median Polish. Journal of Agricultural, Biological, and Environmental Statistics, 17(3), 354–376. https://doi.org/10.1007/s13253-012-0096-8
Tutmez, B. (2014). Analyzing non-stationarity in cement stone pit by median polish interpolation: a case study. Journal of Applied Statistics, 41(2), 454–466. https://doi.org/10.1080/02664763.2013.840274
Varouchakis, E. A., Hristopulos, D. T., Karatzas, G. P., Perez, G. A. C., & Diaz, V. (2021). Spatiotemporal geostatistical analysis of precipitation combining ground and satellite observations. Hydrology Research, 52(3), 804–820. https://doi.org/10.2166/nh.2021.160
Verdin, A., Funk, C., Rajagopalan, B., & Kleiber, W. (2016). Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems. IEEE Transactions on Geoscience and Remote Sensing, 54(5), 2552–2562. https://doi.org/10.1109/TGRS.2015.2502956
Yang, X., Yang, Y., Li, K., & Wu, R. (2020). Estimation and characterization of annual precipitation based on spatiotemporal kriging in the Huanghuaihai basin of China during 1956–2016. Stochastic Environmental Research and Risk Assessment, 34(9), 1407–1420. https://doi.org/10.1007/s00477-019-01757-0
Zhang, W., Liu, D., Zheng, S., Liu, S., Loáiciga, H. A., & Li, W. (2020). Regional precipitation model based on geographically and temporally weighted regression kriging. Remote Sensing, 12(16), 1–19. https://doi.org/10.3390/RS12162547
DOI: https://doi.org/10.31764/jtam.v9i3.30642
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Friendtika Miftaqul Jannah, Rahma Fitriani, Henny Pramoedyo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: