A Spatiotemporal Analysis of Humidity Pattern in Bali using Space-Time Kriging with Seasonal Drift
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Adhikary, S. K., Muttil, N., & Yilmaz, A. G. (2017). Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments. Hydrological Processes, 31(12), 2143–2161. https://doi.org/10.1002/hyp.11163
Amelia, R., Julianti, E., & Guskarnali. (2023). Implementation of Inverse Distance Weighting (IDW) and Kriging method for distribution pattern humidity and temperature data on weather changes in the Bangka Islands. IOP Conference Series: Earth and Environmental Science, 1267(1), 012091. https://doi.org/10.1088/1755-1315/1267/1/012091
Ananta, M. I., Limantara, L. M., & Soetopo, W. (2024). The Impact of Climate Change on Air Temperature in the Rainy and Dry Seasons in East Java, Indonesia: A Case Study of Climate Change in the Wlingi Dam Area. International Journal of Environmental Impacts, 7(2), 169–180. https://doi.org/10.18280/ijei.070202
Atasoy, M., & Guneysu Atasoy, F. (2020). The Impact of Climate Change on Tourism: A Causality Analysis. Turkish Journal of Agriculture - Food Science and Technology, 8(2), 515–519. https://doi.org/10.24925/turjaf.v8i2.515-519.3250
Bachrudin, A., Ruchjana, B. N., Abdullah, A. S., & Budiarto, R. (2023). Spatio-Temporal Model of a Product–Sum Simulation on Stream Network Based on Hydrologic Distance. Water, 15(11), 2039. https://doi.org/10.3390/w15112039
Baldwin, J. W., Benmarhnia, T., Ebi, K. L., Jay, O., Lutsko, N. J., & Vanos, J. K. (2023). Humidity’s Role in Heat-Related Health Outcomes: A Heated Debate. Environmental Health Perspectives, 131(5). https://doi.org/10.1289/ehp11807
Das, P., & Barman, S. (2025). Perspective Chapter: An Overview of Time Series Decomposition and Its Applications. In Applied and Theoretical Econometrics and Financial Crises [Working Title]. IntechOpen. https://doi.org/10.5772/intechopen.1009268
Dhaher, G., & Shexo, A. (2023). Using Kriging Technique to Interpolate and Forecasting Temperatures Spatio-Temporal Data. European Journal of Pure and Applied Mathematics, 16(1), 373–385. https://doi.org/10.29020/nybg.ejpam.v16i1.4613
Ding, Q., Wang, Y., Zheng, Y., Wang, F., Zhou, S., Pan, D., Xiong, Y., & Zhang, Y. (2024). Subsurface Geological Profile Interpolation Using a Fractional Kriging Method Enhanced by Random Forest Regression. Fractal and Fractional, 8(12), 717. https://doi.org/10.3390/fractalfract8120717
Du, Z., Wu, S., Kwan, M.-P., Zhang, C., Zhang, F., & Liu, R. (2018). A spatiotemporal regression-kriging model for space-time interpolation: A case study of chlorophyll-a prediction in the coastal areas of Zhejiang, China. International Journal of Geographical Information Science, 32(10), 1927–1947. https://doi.org/10.1080/13658816.2018.1471607
Jong, M.-C., Puah, C.-H., & Arip, M. A. (2024). The Impact of Climate Change on Tourism Demand in China. International Journal of Energy Economics and Policy, 14(3), 482–488. https://doi.org/10.32479/ijeep.14149
Khan, M., Almazah, M. M. A., EIlahi, A., Niaz, R., Al-Rezami, A. Y., & Zaman, B. (2023). Spatial interpolation of water quality index based on Ordinary kriging and Universal kriging. Geomatics, Natural Hazards and Risk, 14(1), 2190853. https://doi.org/10.1080/19475705.2023.2190853
Krock, M., Bessac, J., Stein, M. L., & Monahan, A. H. (2022). Nonstationary seasonal model for daily mean temperature distribution bridging bulk and tails. Weather and Climate Extremes, 36, 100438. https://doi.org/10.1016/j.wace.2022.100438
Lambardi Di San Miniato, M., Bellio, R., Grassetti, L., & Vidoni, P. (2022). Separable spatio‐temporal kriging for fast virtual sensing. Applied Stochastic Models in Business and Industry, 38(5), 806–829. https://doi.org/10.1002/asmb.2697
Li, S., Griffith, D. A., & Shu, H. (2020). Temperature prediction based on a space–time regression-kriging model. Journal of Applied Statistics, 47(7), 1168–1190. https://doi.org/10.1080/02664763.2019.1671962
Liu, D. (2024). The prediction and analysis of global climate change based on SARIMA. Applied and Computational Engineering, 40(1), 268–273. https://doi.org/10.54254/2755-2721/40/20230665
Lukić, D., Petrović, M. D., Radovanović, M. M., & Tretiakova, T. N. (2021). The role of TCI and TCCI indexes in regional tourism planning. European Journal of Geography, 12(4), 6–15. https://doi.org/10.48088/ejg.d.luk.12.4.006.015
Lv, J., & Du, S. (2021). Kriging Method-Based Return Prediction of Waste Electrical and Electronic Equipment in Reverse Logistics. Applied Sciences, 11(8), 3536. https://doi.org/10.3390/app11083536
Mondal, S. K., Ahmmad, M. S., Khan, S., Chowdhury, M. H., Paul, G. K., Binyamin, Md., Gupta, P. S., Purohit, S., & Chakrabortty, R. (2025). Modeling and Forecasting Monthly Humidity in South Asia: A SARIMA Approach. Earth Systems and Environment. https://doi.org/10.1007/s41748-025-00607-0
O’Rourke, S., & Kelly, G. E. (2015). Spatio-temporal Modelling of Forest Growth Spanning 50 Years – The Effects of Different Thinning Strategies. Procedia Environmental Sciences, 26, 101–104. https://doi.org/10.1016/j.proenv.2015.05.008
Rahmawati, N. (2020). Space-time variogram for daily rainfall estimates using rain gauges and satellite data in mountainous tropical Island of Bali, Indonesia (Preliminary Study). Journal of Hydrology, 590, 125177. https://doi.org/10.1016/j.jhydrol.2020.125177
Ramadhani, D. P., Alamsyah, A., Febrianta, M. Y., & Damayanti, L. Z. A. (2024). Exploring Tourists’ Behavioral Patterns in Bali’s Top-Rated Destinations: Perception and Mobility. Journal of Theoretical and Applied Electronic Commerce Research, 19(2), 743–773. https://doi.org/10.3390/jtaer19020040
Ro, Y., & Yoo, C. (2022). Numerical Experiments Applying Simple Kriging to Intermittent and Log-Normal Data. Water, 14(9), 1364. https://doi.org/10.3390/w14091364
Simorangkir, C. O., Ramadhan, G., Sukran, M. A., & Manalu, T. (2024). Tourism Development Impact on Economic Growth and Poverty Alleviation in West Java. Jurnal Kepariwisataan Indonesia: Jurnal Penelitian Dan Pengembangan Kepariwisataan Indonesia, 18(2), 175–196. https://doi.org/10.47608/jki.v18i22024.175-196
Susanto, J., Zheng, X., Liu, Y., & Wang, C. (2020). The Impacts of Climate Variables and Climate-Related Extreme Events on Island Country’s Tourism: Evidence from Indonesia. Journal of Cleaner Production, 276, 124204. https://doi.org/10.1016/j.jclepro.2020.124204
Taharin, M. R., & Roslee, R. (2021). The Application of Semi Variogram and Ordinary Kriging in Determining the Cohesion and Clay Percentage Distribution in Hilly Area of Sabah, Malaysia. International Journal of Design & Nature and Ecodynamics, 16(5), 525–530. https://doi.org/10.18280/ijdne.160506
Toersilowati, L., Siswanto, B., Maryadi, E., Susanti, I., Suhermat, M., Witono, A., Sipayung, S. B., Rahayu, S. A., ‘Adany, F., Aminuddin, J., & Lubis, R. F. (2022). The Projections of Climate Change using Conformal Cubic Atmospheric Model (CCAM) in Bali—Indonesia. IOP Conference Series: Earth and Environmental Science, 1047(1), 012033. https://doi.org/10.1088/1755-1315/1047/1/012033
Venkatachalam, P., & Kumar, M. (2017). Space-Time Variogram Modeling. In S. Shekhar, H. Xiong, & X. Zhou (Eds.), Encyclopedia of GIS (pp. 1932–1938). Springer International Publishing. https://doi.org/10.1007/978-3-319-17885-1_1643
Zaharieva, S., Georgiev, I., Georgiev, S., Borodzhieva, A., & Todorov, V. (2025). A Method for Forecasting Indoor Relative Humidity for Improving Comfort Conditions and Quality of Life. Atmosphere, 16(3), 315. https://doi.org/10.3390/atmos16030315
Zeiss, H., Graw, K., & Matzarakis, A. (2022). Impact of the Destination Weather Conditions on Decision and Complaint Behavior of Guests Who Booked Vacation Rentals. Atmosphere, 13(12), 1998. https://doi.org/10.3390/atmos13121998
Zeng, Y., Filimonau, V., Wang, L., & Zhong, L. (2023). The impact of perceived unfavorable weather on tourist loyalty in high-altitude destinations: The case of the Qinghai-Tibet plateau, China. Journal of Outdoor Recreation and Tourism, 43, 100658. https://doi.org/10.1016/j.jort.2023.100658
Zhao, J., Li, C., Yang, T., Tang, Y., Yin, Y., Luan, X., & Sun, S. (2020). Estimation of high spatiotemporal resolution actual evapotranspiration by combining the SWH model with the METRIC model. Journal of Hydrology, 586, 124883. https://doi.org/10.1016/j.jhydrol.2020.124883
DOI: https://doi.org/10.31764/jtam.v9i3.30874
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Salma Fitri Nugroho, Rahma Fitriani, Atiek Iriany

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: