Enhancing Adaptive Particle Swarm Optimization Based on Human Social Learning with Human Learning Strategies for the Traveling Salesman Problem

Yusti Qomah, Bib Paruhum Silalahi, Toni Bakhtiar

Abstract


Particle Swarm Optimization (PSO) is a widely used metaheuristic approach for solving optimization problems. Recent developments in this field involve the adaptation of human learning behaviors to enhance algorithmic performance. One such adaptation is the Adaptive Particle Swarm Optimization based on Human Social Learning (APSO-HSL), a variant of PSO that incorporates human-inspired learning strategies. This study aims to enhance the performance of APSO-HSL on the Traveling Salesman Problem (TSP) by incorporating additional human learning strategies. The proposed algorithm, named Modified Adaptive Particle Swarm Optimization–Human Learning Strategies (MAPSO-HLS), integrates learning mechanisms from Human Learning Optimization (HLO), including individual, random, and social learning. This research is classified as applied research and algorithmic experimentation, focusing on the development and modification of a metaheuristic algorithm to solve a well-known combinatorial optimization problem. Benchmark datasets from the Traveling Salesman Problem Library (TSPLIB) are used for evaluation, and all computations and experiments are implemented in Python. The performance of MAPSO-HLS is compared with the original APSO-HSL in terms of shortest distance, convergence rate, and population diversity. A comparison of the shortest distances was conducted using exact solutions and evaluated through percentage deviation. The results show that MAPSO-HLS produces more accurate solutions than APSO-HSL. Convergence analysis reveals that MAPSO-HLS converges faster toward lower objective values. Its advantage is further supported by the diversity analysis, where the diversity curves indicate a better balance between exploration and exploitation.

Keywords


Particle Swarm Optimization; Human Learning Optimization; Traveling Salesman Problem; Operations Research.

Full Text:

DOWNLOAD [PDF]

References


Ab Wahab, M. N., Nefti-Meziani, S., & Atyabi, A. (2015). A comprehensive review of swarm optimization algorithms. PLoS ONE, 10(5), 1-36. https://doi.org/10.1371/journal.pone.0122827

Al-Maamari, A., & Omara, F. A. (2015). Task scheduling using PSO algorithm in cloud computing environments. International Journal of Grid and Distributed Computing, 8(5), 245–256. https://doi.org/10.14257/ijgdc.2015.8.5.24

Ashraf, A., Almazroi, A. A., Bangyal, W. H., & Alqarni, M. A. (2022). Particle swarm optimization with new initializing technique to solve global optimization problems. Intelligent Automation and Soft Computing, 31(1), 191–206. https://doi.org/10.32604/IASC.2022.015810

Bangyal, W. H., Nisar, K., Soomro, T. R., Ag Ibrahim, A. A., Mallah, G. A., Hassan, N. U., & Rehman, N. U. (2023). An improved particle swarm optimization algorithm for data classification. Applied Sciences (Switzerland), 13(1), 1-18. https://doi.org/10.3390/app13010283

Chen, D., Imdahl, C., Lai, D., & Van Woensel, T. (2025). The Dynamic Traveling Salesman Problem with Time-Dependent and Stochastic travel times: A deep reinforcement learning approach. Transportation Research Part C: Emerging Technologies, 172, 105022. https://doi.org/10.1016/J.TRC.2025.105022

Ding, H., & Gu, X. (2020). Hybrid of human learning optimization algorithm and particle swarm optimization algorithm with scheduling strategies for the flexible job-shop scheduling problem. Neurocomputing, 414, 313–332. https://doi.org/10.1016/j.neucom.2020.07.004

Du, J., Wang, L., Fei, M., & Ilyas, M. (2022). A human learning optimization algorithm with competitive and cooperative learning. Complex & Intelligent Systems, 9(1), 797-823. https://doi.org/ 10.1007/s40747-022-00808-4

Gad, A. G. (2022). Particle swarm optimization algorithm and its applications: a systematic review. Archives of Computational Methods in Engineering, 29(5), 2531–2561. https://doi.org/10.1007/s11831-021-09694-4

Guo, W., Li, L., Chen, M., Ni, W., Wang, L., & Li, D. (2025). Balancing convergence and diversity preservation in dual search space for large scale particle swarm optimization. Applied Soft Computing, 169, 112617. https://doi.org/10.1016/J.ASOC.2024.112617

Houssein, E. H., Gad, A. G., Hussain, K., & Suganthan, P. N. (2021). Major Advances in Particle Swarm Optimization: Theory, Analysis, and Application. Swarm and Evolutionary Computation, 63, 100868. https://doi.org/10.1016/J.SWEVO.2021.100868

Jain, N. K., Nangia, U., & Jain, J. (2018). A review of particle swarm optimization. In Journal of The Institution of Engineers (India): Series B (Vol. 99, Issue 4, pp. 407–411). Springer. https://doi.org/10.1007/s40031-018-0323-y

Jarecki, J. B., Meder, B., & Nelson, J. D. (2018). Naïve and robust: class-conditional independence in human classification learning. Cognitive Science, 42(1), 4–42. https://doi.org/10.1111/cogs.12496

Jedrzejowicz, P., Keller, K., Skakovski, A. (2024). An efficient hybrid evolutionary algorithm for solving the traveling salesman problem. Procedia Computer Science, 246(C), 3566-3574. https://doi.org/10.1016/j.procs.2024.09.201

Jiyue, E., Liu, J., & Wan, Z. (2023). A novel adaptive algorithm of particle swarm optimization based on the human social learning intelligence. Swarm and Evolutionary Computation, 80, 101336. https://doi.org/10.1016/j.swevo.2023.101336

Larsen, R. B., Jouffroy, J., & Lassen, B. (2016). On the premature convergence of particle swarm optimization. 2016 European Control Conference, ECC 2016, 1922–1927. https://doi.org/10.1109/ECC.2016.7810572

Lynn, N., & Suganthan, P. N. (2015). Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm and Evolutionary Computation, 24, 11–24. https://doi.org/10.1016/J.SWEVO.2015.05.002

Piotrowski, A. P., Napiorkowski, J. J., & Piotrowska, A. E. (2020). Population size in Particle Swarm Optimization. Swarm and Evolutionary Computation, 58(April), 100718. https://doi.org/10.1016/j.swevo.2020.100718

Punyakum, V., Sethanan, K., Nitisiri, K., Pitakaso, R., & Gen, M. (2022). Hybrid differential evolution and particle swarm optimization for multi-visit and multi-period workforce scheduling and routing problems. Computers and Electronics in Agriculture, 197(2), 106929. https://doi.org/10.1016/j.compag.2022.106929

Ramdhani, L. S. (2016). Penerapan Particle Swarm Optimization (PSO) untuk seleksi atribut dalam meningkatkan akurasi prediksi diagnosis penyakit hepatitis dengan metode algoritma C4.5. Swabumi, 4(1), 1–15. https://doi.org/10.31294/swabumi.v4i1.1011

Roberts-Mahoney, H., Means, A. J., & Garrison, M. J. (2016). Netflixing human capital development: personalized learning technology and the corporatization of K-12 education. Journal of Education Policy, 31(4), 405–420. https://doi.org/10.1080/02680939.2015.1132774

Shaj, V., M, A. P., & S, A. (2016). Edge PSO: a recombination operator based PSO algorithm for solving TSP. In Proceedings of the 2016 Inernational Conference on Advances in Computing, Communication and Informatics (pp. 35–41). https://doi.org/10.1109/ICACCI.2016.7732022

TSPLIB. (n.d.). Retrieved November 3, 2024, from http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/tsp/

Vahdat, M., Oneto, L., Anguita, D., Funk, M., & Rauterberg, M. (2016). Can machine learning explain human learning? Neurocomputing, 192, 14–28. https://doi.org/10.1016/j.neucom.2015.11.100

Wang, L., Ni, H., Yang, R., Pardalos, P. M., Du, X., & Fei, M. (2015). An adaptive simplified human learning optimization algorithm. Information Sciences, 320(6), 126–139. https://doi.org/10.1016/J.INS.2015.05.022

Wang, L., Pei, J., Menhas, M. I., Pi, J., Fei, M., & Pardalos, P. M. (2017). A Hybrid-coded Human Learning Optimization for mixed-variable optimization problems. Knowledge-Based Systems, 127(C), 114–125. https://doi.org/10.1016/j.knosys.2017.04.015

Wang, L., Pei, J., Wen, Y., Pi, J., Fei, M., & Pardalos, P. M. (2018). An improved adaptive human learning algorithm for engineering optimization. Applied Soft Computing Journal, 71, 894–904. https://doi.org/10.1016/j.asoc.2018.07.051

Wang, L., Yang, R., Ni, H., Ye, W., Fei, M., & Pardalos, P. M. (2015). A human learning optimization algorithm and its application to multi-dimensional knapsack problems. Applied Soft Computing Journal, 34, 736-743. https://doi.org/10.1016/j.asoc.2015.06.004

Zhong, Y., Lin, J., Wang, L., & Zhang, H. (2018). Discrete comprehensive learning particle swarm optimization algorithm with metropolis acceptance criterion for traveling salesman problem. Swarm and Evolutionary Computation, 42(C), 77–88. https://doi.org/10.1016/j.swevo.2018.02.017




DOI: https://doi.org/10.31764/jtam.v9i4.31466

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Yusti Qomah, Bib Paruhum Silalahi, Toni Bakhtiar

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: