Enhancing Adaptive Particle Swarm Optimization Based on Human Social Learning with Human Learning Strategies for the Traveling Salesman Problem
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Ab Wahab, M. N., Nefti-Meziani, S., & Atyabi, A. (2015). A comprehensive review of swarm optimization algorithms. PLoS ONE, 10(5), 1-36. https://doi.org/10.1371/journal.pone.0122827
Al-Maamari, A., & Omara, F. A. (2015). Task scheduling using PSO algorithm in cloud computing environments. International Journal of Grid and Distributed Computing, 8(5), 245–256. https://doi.org/10.14257/ijgdc.2015.8.5.24
Ashraf, A., Almazroi, A. A., Bangyal, W. H., & Alqarni, M. A. (2022). Particle swarm optimization with new initializing technique to solve global optimization problems. Intelligent Automation and Soft Computing, 31(1), 191–206. https://doi.org/10.32604/IASC.2022.015810
Bangyal, W. H., Nisar, K., Soomro, T. R., Ag Ibrahim, A. A., Mallah, G. A., Hassan, N. U., & Rehman, N. U. (2023). An improved particle swarm optimization algorithm for data classification. Applied Sciences (Switzerland), 13(1), 1-18. https://doi.org/10.3390/app13010283
Chen, D., Imdahl, C., Lai, D., & Van Woensel, T. (2025). The Dynamic Traveling Salesman Problem with Time-Dependent and Stochastic travel times: A deep reinforcement learning approach. Transportation Research Part C: Emerging Technologies, 172, 105022. https://doi.org/10.1016/J.TRC.2025.105022
Ding, H., & Gu, X. (2020). Hybrid of human learning optimization algorithm and particle swarm optimization algorithm with scheduling strategies for the flexible job-shop scheduling problem. Neurocomputing, 414, 313–332. https://doi.org/10.1016/j.neucom.2020.07.004
Du, J., Wang, L., Fei, M., & Ilyas, M. (2022). A human learning optimization algorithm with competitive and cooperative learning. Complex & Intelligent Systems, 9(1), 797-823. https://doi.org/ 10.1007/s40747-022-00808-4
Gad, A. G. (2022). Particle swarm optimization algorithm and its applications: a systematic review. Archives of Computational Methods in Engineering, 29(5), 2531–2561. https://doi.org/10.1007/s11831-021-09694-4
Guo, W., Li, L., Chen, M., Ni, W., Wang, L., & Li, D. (2025). Balancing convergence and diversity preservation in dual search space for large scale particle swarm optimization. Applied Soft Computing, 169, 112617. https://doi.org/10.1016/J.ASOC.2024.112617
Houssein, E. H., Gad, A. G., Hussain, K., & Suganthan, P. N. (2021). Major Advances in Particle Swarm Optimization: Theory, Analysis, and Application. Swarm and Evolutionary Computation, 63, 100868. https://doi.org/10.1016/J.SWEVO.2021.100868
Jain, N. K., Nangia, U., & Jain, J. (2018). A review of particle swarm optimization. In Journal of The Institution of Engineers (India): Series B (Vol. 99, Issue 4, pp. 407–411). Springer. https://doi.org/10.1007/s40031-018-0323-y
Jarecki, J. B., Meder, B., & Nelson, J. D. (2018). Naïve and robust: class-conditional independence in human classification learning. Cognitive Science, 42(1), 4–42. https://doi.org/10.1111/cogs.12496
Jedrzejowicz, P., Keller, K., Skakovski, A. (2024). An efficient hybrid evolutionary algorithm for solving the traveling salesman problem. Procedia Computer Science, 246(C), 3566-3574. https://doi.org/10.1016/j.procs.2024.09.201
Jiyue, E., Liu, J., & Wan, Z. (2023). A novel adaptive algorithm of particle swarm optimization based on the human social learning intelligence. Swarm and Evolutionary Computation, 80, 101336. https://doi.org/10.1016/j.swevo.2023.101336
Larsen, R. B., Jouffroy, J., & Lassen, B. (2016). On the premature convergence of particle swarm optimization. 2016 European Control Conference, ECC 2016, 1922–1927. https://doi.org/10.1109/ECC.2016.7810572
Lynn, N., & Suganthan, P. N. (2015). Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm and Evolutionary Computation, 24, 11–24. https://doi.org/10.1016/J.SWEVO.2015.05.002
Piotrowski, A. P., Napiorkowski, J. J., & Piotrowska, A. E. (2020). Population size in Particle Swarm Optimization. Swarm and Evolutionary Computation, 58(April), 100718. https://doi.org/10.1016/j.swevo.2020.100718
Punyakum, V., Sethanan, K., Nitisiri, K., Pitakaso, R., & Gen, M. (2022). Hybrid differential evolution and particle swarm optimization for multi-visit and multi-period workforce scheduling and routing problems. Computers and Electronics in Agriculture, 197(2), 106929. https://doi.org/10.1016/j.compag.2022.106929
Ramdhani, L. S. (2016). Penerapan Particle Swarm Optimization (PSO) untuk seleksi atribut dalam meningkatkan akurasi prediksi diagnosis penyakit hepatitis dengan metode algoritma C4.5. Swabumi, 4(1), 1–15. https://doi.org/10.31294/swabumi.v4i1.1011
Roberts-Mahoney, H., Means, A. J., & Garrison, M. J. (2016). Netflixing human capital development: personalized learning technology and the corporatization of K-12 education. Journal of Education Policy, 31(4), 405–420. https://doi.org/10.1080/02680939.2015.1132774
Shaj, V., M, A. P., & S, A. (2016). Edge PSO: a recombination operator based PSO algorithm for solving TSP. In Proceedings of the 2016 Inernational Conference on Advances in Computing, Communication and Informatics (pp. 35–41). https://doi.org/10.1109/ICACCI.2016.7732022
TSPLIB. (n.d.). Retrieved November 3, 2024, from http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/tsp/
Vahdat, M., Oneto, L., Anguita, D., Funk, M., & Rauterberg, M. (2016). Can machine learning explain human learning? Neurocomputing, 192, 14–28. https://doi.org/10.1016/j.neucom.2015.11.100
Wang, L., Ni, H., Yang, R., Pardalos, P. M., Du, X., & Fei, M. (2015). An adaptive simplified human learning optimization algorithm. Information Sciences, 320(6), 126–139. https://doi.org/10.1016/J.INS.2015.05.022
Wang, L., Pei, J., Menhas, M. I., Pi, J., Fei, M., & Pardalos, P. M. (2017). A Hybrid-coded Human Learning Optimization for mixed-variable optimization problems. Knowledge-Based Systems, 127(C), 114–125. https://doi.org/10.1016/j.knosys.2017.04.015
Wang, L., Pei, J., Wen, Y., Pi, J., Fei, M., & Pardalos, P. M. (2018). An improved adaptive human learning algorithm for engineering optimization. Applied Soft Computing Journal, 71, 894–904. https://doi.org/10.1016/j.asoc.2018.07.051
Wang, L., Yang, R., Ni, H., Ye, W., Fei, M., & Pardalos, P. M. (2015). A human learning optimization algorithm and its application to multi-dimensional knapsack problems. Applied Soft Computing Journal, 34, 736-743. https://doi.org/10.1016/j.asoc.2015.06.004
Zhong, Y., Lin, J., Wang, L., & Zhang, H. (2018). Discrete comprehensive learning particle swarm optimization algorithm with metropolis acceptance criterion for traveling salesman problem. Swarm and Evolutionary Computation, 42(C), 77–88. https://doi.org/10.1016/j.swevo.2018.02.017
DOI: https://doi.org/10.31764/jtam.v9i4.31466
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Yusti Qomah, Bib Paruhum Silalahi, Toni Bakhtiar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: