Analysis of Online Game Addiction with Crowley-Martin Incident Rate Function

Ilham Syata, St. Nur Humairah Halim

Abstract


This study aims to build and analyze a new mathematical model of online game addiction with the Crowley-Martin type incidence rate function approach. This research is categorized as a theoretical-quantitative study using mathematical modeling as its primary approach. The research instruments used include symbolic computation, simulation software, and parameter estimation techniques derived from literature. Stability analysis is conducted through Jacobian linearization, the Routh-Hurwitz criterion, and the Next Generation Matrix method to calculate the basic reproduction number. Optimal control is formulated using Pontryagin’s Minimum Principle with two strategies: parental guidance and counseling therapy. Data analysis combines analytical techniques in stability and control theory with numerical simulations to evaluate the system. The results show that: The addiction-free fixed point T_0 is locally asymptotically stable if R_0<1, the addiction fixed point T^*is locally asymptotically stable if R_0>1. Numerical simulations demonstrate that combined control strategies effectively reduce the number of exposed and addicted individuals.

Keywords


Online Game; Stability; Crowley-Martin; Optimal Control.

Full Text:

DOWNLOAD [PDF]

References


Ali, H. M., Pereira, F. L., & Gama, S. M. A. (2016). A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems. Mathematical Methods in the Applied Sciences, 39(13), 3640–3649. https://doi.org/10.1002/mma.3811

Anderson, E. L., Steen, E., & Stavropoulos, V. (2016). Internet use and Problematic Internet Use: a systematic review of longitudinal research trends in adolescence and emergent adulthood. In International Journal of Adolescence and Youth (Vol. 22, Issue 4, pp. 430–454). Routledge. https://doi.org/10.1080/02673843.2016.1227716

Asosiasi Penyelenggara Jasa Internet Indonesia. (2024). APJII Jumlah Pengguna Internet Indonesia Tembus 221 Juta Orang. https://apjii.or.id/berita/d/apjii-jumlah-pengguna-internet-indonesia-tembus-221-juta-orang

Boscain, U., Sigalotti, M., & Sugny, D. (2021). Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control. PRX Quantum, 2(3), 1. https://doi.org/10.1103/PRXQuantum.2.030203

Brauer, F., & Castillo-Chavez, C. (2011). Mathematical models in population biology and epidemiology (Second Edi). Springer.

Choo, H., Sim, T., Liau, A. K. F., Gentile, D. A., & Khoo, A. (2015). Parental Influences on Pathological Symptoms of Video-Gaming Among Children and Adolescents: A Prospective Study. Journal of Child and Family Studies, 24(5), 1429–1441. https://doi.org/10.1007/s10826-014-9949-9

Djannah, S. N., Tentama, F., & Sinanto, R. A. (2021). Game addiction among adolescents and its’ health impacts. International Journal of Public Health Science, 10(3), 480–492. https://doi.org/10.11591/ijphs.v10i3.20920

Gentile, D. A., Coyne, S., & Walsh, D. A. (2011). Media violence, physical aggression, and relational aggression in school age children: A short-term longitudinal study. Aggressive Behavior, 37(2), 193–206. https://doi.org/10.1002/ab.20380

Gros, L., Debue, N., Lete, J., & van de Leemput, C. (2020). Video Game Addiction and Emotional States: Possible Confusion Between Pleasure and Happiness? Frontiers in Psychology, 10(January), 1–21. https://doi.org/10.3389/fpsyg.2019.02894

Guo, Y., & Li, T. (2020). Optimal control and stability analysis of an online game addiction model with two stages. Mathematical Methods in the Applied Sciences, 43(7), 4391–4408. https://doi.org/10.1002/mma.6200

Guo, Y., & Li, T. (2022). Dynamics and optimal control of an online game addiction model with considering family education. AIMS Mathematics, 7(3), 3745–3770. https://doi.org/10.3934/math.2022208

Jeong, H., Lee, H. K., Kwon, Y. S., Yim, H. W., & Lee, S. Y. (2020). Gaming disorder and bidirectional relationships with aggression and impulsivity. Current Opinion in Behavioral Sciences, 31, 69–75. https://doi.org/10.1016/j.cobeha.2019.12.003

Kementerian Komunikasi dan Informatika. (2022). IGDX 2022 Picu Daya Saing Pengembang Game Lokal. https://aptika.kominfo.go.id/2022/10/igdx-2022-picu-daya-saing-pengembang-game-lokal/

King, D. L., Delfabbro, P. H., Billieux, J., & Potenza, M. N. (2020). Problematic online gaming and the COVID-19 pandemic. Journal of Behavioral Addictions, 9(2), 184–186. https://doi.org/10.1556/2006.2020.00016

Kumar, A., & Nilam. (2019). Dynamic Behavior of an SIR Epidemic Model along with Time Delay; Crowley–Martin Type Incidence Rate and Holling Type II Treatment Rate. International Journal of Nonlinear Sciences and Numerical Simulation, 20(7–8), 757–771. https://doi.org/10.1515/ijnsns-2018-0208

Kuss, D. J., & Griffiths, M. D. (2012). Online gaming addiction in children and adolescents: A review of empirical research. Journal of Behavioral Addictions, 1(1), 3–22. https://doi.org/10.1556/JBA.1.2012.1.1

Kuss, D. J., Pontes, H. M., & Griffiths, M. D. (2018). Neurobiological correlates in internet gaming disorder: A systematic literature review. Frontiers in Psychiatry, 9(MAY), 1–12. https://doi.org/10.3389/fpsyt.2018.00166

Li, T., & Guo, Y. (2019). Stability and optimal control in a mathematical model of online game addiction. Filomat, 33(17), 5691–5711. https://doi.org/10.2298/FIL1917691L

Li, T., & Guo, Y. (2021). Optimal control of an online game addiction model with positive and negative media reports. Journal of Applied Mathematics and Computing, 66(1–2), 599–619. https://doi.org/10.1007/s12190-020-01451-3

Li, T., & Guo, Y. (2022). Optimal Control Strategy of an Online Game Addiction Model with Incomplete Recovery. Journal of Optimization Theory and Applications, 195(3), 780–807. https://doi.org/10.1007/s10957-022-02123-x

Paulus, F. W., Ohmann, S., von Gontard, A., & Popow, C. (2018). Internet gaming disorder in children and adolescents: a systematic review. Developmental Medicine and Child Neurology, 60(7), 645–659. https://doi.org/10.1111/dmcn.13754

Seno, H. (2021). A mathematical model of population dynamics for the internet gaming addiction*. Nonlinear Analysis: Modelling and Control, 26(5), 861–883. https://doi.org/10.15388/namc.2021.26.24177

Stevens, M. W. R., King, D. L., Dorstyn, D., & Delfabbro, P. H. (2019). Cognitive–behavioral therapy for Internet gaming disorder: A systematic review and meta-analysis. Clinical Psychology and Psychotherapy, 26(2), 191–203. https://doi.org/10.1002/cpp.2341

Van Den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1–2), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6

Viriyapong, R., & Sookpiam, M. (2019). Education campaign and family understanding affect stability and qualitative behavior of an online game addiction model for children and youth in Thailand. Mathematical Methods in the Applied Sciences, 42(18), 6906–6916. https://doi.org/10.1002/mma.5796




DOI: https://doi.org/10.31764/jtam.v9i3.31641

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ilham Syata, St. Nur Humairah Halim

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: