Construction of Mortality Table for Credit Life Insurance using Whittaker-Henderson Graduation Method
Abstract
Indonesian Mortality Table III (2011) and Indonesian Mortality Table IV (2019) are still used as a reference for determining life insurance premiums, one of which is determining Credit Life Insurance premium rates. With different and more specific population and risk characteristics, it is necessary to have Mortality Table that reflects the characteristics of the Credit Life Insurance. This study is a quantitative applied study that aims to construct a specialized mortality table reflecting the unique characteristics of Credit Life insurance. First, the crude mortality rates were calculated using Microsoft Excel based on Credit Life Insurance portfolio data obtained from a life insurance company having a fairly large portfolio, during the period from 2017 to 2023. The crude mortality results were then adjusted using a smoothing technique of Whittaker-Henderson method assisted with the R program and Microsoft Excel. After obtaining the smoothed mortality rates, an extrapolation was carried out using Gompertz model assisted with the R program and Microsoft Excel to obtain the mortality rate for ages between 75 and 100 years. The extrapolated results are subsequently compared with the Indonesia Mortality Table III (IMT-III) and Indonesia Mortality Table IV (IMT-IV) to assess the consistency of mortality patterns. The main contribution of this study is the development of a more representative mortality table based on empirical data from credit life insurance portfolios, an area that has not been extensively explored. The findings of this study are expected to improve the accuracy of premium pricing, technical reserve estimation, and risk management for life insurance companies offering credit life insurance products.
Keywords
Full Text:
DOWNLOAD [PDF]References
Biessy, G. (2024). Revisiting Whittaker-Henderson Smoothing. ArXiv, 1–42. https://doi.org/10.48550/arXiv.2306.06932
Booth, H., & Tickle, L. (2008). Mmortality modelling and forecasting: A Review of methods. Annals of Actuarial Science, 3(I/II), 3–43. https://doi.org/10.1017/S1748499500000440
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). In Berlin: Springer. https://doi.org/10.1007/b97636
Cox, P. R., Benjamin, B., & Haycocks, H. W. (1971). The Analysis of Mortality and Other Actuarial Statistics. In Applied Statistics (Vol. 20, Issue 3). Cambridge University Press. https://doi.org/10.2307/2346768
Forfar, D. O., McCutcheon, J. J., & Wilkie, A. D. (1988). On graduation by mathematical formula. Journal of the Institute of Actuaries, 115(2), 1–153. https://doi.org/10.1017/s0020268100042633
Gompertz, B. (1833). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. &c. By Benjamin Gompertz, Esq. F. R. S. Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London, 2(115), 252–253. https://doi.org/10.1098/rspl.1815.0271
Haberman, S., & Renshaw, A. (2011). A comparative study of parametric mortality projection models. Insurance: Mathematics and Economics, 48(1), 35–55. https://doi.org/10.1016/j.insmatheco.2010.09.003
Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022
Kostaki, A., & Zafeiris, K. N. (2019). Dealing with limitations of empirical mortality data in small populations. Communications in Statistics: Case Studies, Data Analysis and Applications, 5(1), 39–45. https://doi.org/https://doi.org/10.1080/23737484.2019.1578706
Lee, R. D., & Carter, L. R. (1992). Modeling and Forecasting U. S. Mortality. Journal of the American Statistical Association, 87(419), 659. https://doi.org/10.2307/2290201
Macdonald, A. S., Richards, S. J., & Currie, I. D. (2018). Modelling Mortality with Actuarial Applications. Cambridge University Press. https://doi.org/https://doi.org/10.1017/9781107051386
Missov, T. I., Lenart, A., Nemeth, L., Canudas-Romo, V., & Vaupel, J. W. (2015). The gompertz force of mortality in terms of the modal age at death. Demographic Research, 32(1), 1031–1048. https://doi.org/10.4054/DemRes.2015.32.36
Mutia, F. G., Lubis, F. A., & Syarvina, W. (2022). Analisis Peran Undewriter Dalam Menyeleksi Risiko pada Produk Asuransi Kesehatan: ManBiz: Journal of Management and Business, 2(1), 122–133. https://doi.org/10.47467/manbiz.v2i1.1801
Nocon, A. S., & Scott, W. F. (2012). An extension of the Whittaker–Henderson method of graduation. Nocon, A. S., & Scott, W. F. (2012). An Extension of the Whittaker–Henderson Method of Graduation. Scandinavian Actuarial Journal, 2012(1), 70–79. Doi:10.1080/03461238.2010.534257, 2012(1), 70–79. https://doi.org/https://doi.org/10.1080/03461238.2010.534257
Olshansky, S. J. A. Y., & Carnes, B. A. (1997). Ever Since Gompertz. Demography, 34(1), 1–15. https://doi.org/10.2307/2061656%0A
Ramadhan, M. A., Zainuddin, A. F., Pasaribu, U. S., & Sari, R. N. K. (2025). Joint-Life Insurance Premium Model Using Archimedean Copula: The Study of Mortality in Indonesia. Journal of the Indonesian Mathematical Society, 31(1), 1–11. https://doi.org/10.22342/jims.v31i1.1783
Richmond, P., & Roehner, B. M. (2016). Predictive implications of Gompertz’s law. Physica A: Statistical Mechanics and Its Applications, 447(1), 446–454. https://doi.org/10.1016/j.physa.2015.12.043
Setiady, G. A., & Kusnadi, F. (2024). Indonesian National Mortality Rates using the Whittaker-Henderson Graduation Method. JTAM (Jurnal Teori Dan Aplikasi Matermatika), 8(4), 1292. https://doi.org/https://doi.org/10.31764/jtam.v8i4.26316
Shklovskii, B. I. (2005). A simple derivation of the Gompertz law for human mortality. Theory in Biosciences, 123(4), 431–433. https://doi.org/10.1016/j.thbio.2005.01.001
Suwondo, A., Munandar, A., Jamil, A. R., Ridwan, M., Pebrianto, P. S., Supriatni, Y., Dwihapsari, P. M., Fahmi, M. A., Kosasih, N., Elviroza, R., Hadiwibowo, B., Yogo, H. D., Pasaribu, T.; Sianturi, M., Pertiwi, R. A., Demus, N.; Hadi, N., Ubadah; Kalla, Y. H., & Jala, B. . F. (2019). Tabel Mortalitas Indonesia IV. Jakarta: Otoritas Jasa Keuangan.
Weinert, H. L. (2007). Efficient computation for Whittaker–Henderson smoothing. Computational Statistics & Data Analysis, 52(2), 959–974. https://doi.org/https://doi.org/10.1016/J.CSDA.2006.11.038
Whittaker, E. T. (1922). On a New Method of Graduation. Proceedings of the Edinburgh Mathematical Society, 41(1), 63–75. https://doi.org/10.1017/s0013091500077853
DOI: https://doi.org/10.31764/jtam.v9i4.31941
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Fajar Eko Prasetyo, Hyuk-Sung Kwon

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: