Assessing Solar Energy Potential through Sunshine Hour Interpolation using Spatiotemporal Kriging with Local Drift

Salma Fitri Nugroho, Rahma Fitriani, Atiek Iriany

Abstract


Solar energy is a key renewable resource, particularly valuable in tropical regions like Bali, where sunlight is consistently available throughout the year. Accurate estimation of sunshine duration is essential for assessing solar energy potential, as it directly affects photovoltaic (PV) system performace and informs strategic planning for renewable energy development. This study aims to develop a spatiotemporal statistical interpolation model to estimate and predict sunshine duration patterns across Bali, thereby enhancing the planning and deployment of solar energy infrastructure. This quantitative research applies space-time kriging with local drift using sunshine duration data (in hours) collected from four meteorological stations between 2019 and 2023. The method effectively captures spatial and temporal dependencies by integrating local drift as a deterministic trend component. Among several models tested, the Gaussian-Gaussian-Gaussian (Gau-Gau-Gau) combination delivered the best performance, with an RMSE of 2.3085. The results show a clear seasonal cycle, with higher sunshine duration during the dry season (May–October) and lower values in the wet season (November–March). Northern and eastern Bali, particularly Buleleng and Karangasem, demonstrate the highest solar potential, while central mountainous areas show lower sunshine exposure due to cloud coverage. These results offer not only a methodological contribution through the application of spatiotemporal kriging with local drift, but also a practical framework for decision-makers. The insights can guide strategic placement of solar farms, optimize energy yield forecasts, and support resilient infrastructure planning in line with Bali’s climatic realities and energy needs.

Keywords


Interpolation; Kriging; Solar Energy; Spatiotemporal; Sunshine Hour.

Full Text:

DOWNLOAD [PDF]

References


Bachrudin, A., Ruchjana, B. N., Abdullah, A. S., & Budiarto, R. (2023). Spatio-Temporal Model of a Product–Sum Simulation on Stream Network Based on Hydrologic Distance. Water, 15(11), 2039. https://doi.org/10.3390/w15112039

Bamisile, O., Acen, C., Cai, D., Huang, Q., & Staffell, I. (2025). The environmental factors affecting solar photovoltaic output. Renewable and Sustainable Energy Reviews, 208(1), 115073. https://doi.org/10.1016/j.rser.2024.115073

Dhaher, G., & Shexo, A. (2023). Using Kriging Technique to Interpolate and Forecasting Temperatures Spatio-Temporal Data. European Journal of Pure and Applied Mathematics, 16(1), 373–385. https://doi.org/10.29020/nybg.ejpam.v16i1.4613

Fitchett, J. M., Roffe, S. J., & Prinsloo, A. S. (2025). Evaluating sunshine hour approximation for biometeorological indices. Theoretical and Applied Climatology, 156(1), 13. https://doi.org/10.1007/s00704-024-05237-6

Hasibuan, A., Nrartha, I. M. A., Fithra, H., Desky, M. A., Isa, M., Siregar, W. V., Nurdin, N., & Kurniawan, R. (2024). Rainy and dry seasons impact on electricity demand in Indonesia. SINERGI, 28(3), 545. https://doi.org/10.22441/sinergi.2024.3.011

He, Q., Zhang, K., Wu, S., Lian, D., Li, L., Shen, Z., Wan, M., Li, L., Wang, R., Fu, E., & Gao, B. (2022). An investigation of atmospheric temperature and pressure using an improved spatio-temporal Kriging model for sensing GNSS-derived precipitable water vapor. Spatial Statistics, 51, 100664. https://doi.org/10.1016/j.spasta.2022.100664

Huang, J., Lu, C., Huang, D., Qin, Y., Xin, F., & Sheng, H. (2024). A Spatial Interpolation Method for Meteorological Data Based on a Hybrid Kriging and Machine Learning Approach. International Journal of Climatology, 44(15), 5371–5380. https://doi.org/10.1002/joc.8641

Iftikhar, H., Bibi, N., Canas Rodrigues, P., & López-Gonzales, J. L. (2023). Multiple Novel Decomposition Techniques for Time Series Forecasting: Application to Monthly Forecasting of Electricity Consumption in Pakistan. Energies, 16(6), 2579. https://doi.org/10.3390/en16062579

Jaiswal, K. K., Chowdhury, C. R., Yadav, D., Verma, R., Dutta, S., Jaiswal, K. S., SangmeshB, & Karuppasamy, K. S. K. (2022). Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus, 7(1), 100118. https://doi.org/10.1016/j.nexus.2022.100118

Kazaz, A., & Adiguzel Istil, S. (2019). A Comparative Analysis of Sunshine Duration Effects in terms of Renewable Energy Production Rates on The LEED BD + C Projects in Turkey. Energies, 12(6), 1116. https://doi.org/10.3390/en12061116

Laksana, E. P., Prabowo, Y., Sujono, S., Sirait, R., Fath, N., Priyadi, A., & Purnomo, M. H. (2021). Potential Usage of Solar Energy as a Renewable Energy Source in Petukangan Utara, South Jakarta. Jurnal Rekayasa Elektrika, 17(4), 212–216. https://doi.org/10.17529/jre.v17i4.22538

Lambardi Di San Miniato, M., Bellio, R., Grassetti, L., & Vidoni, P. (2022). Separable spatio‐temporal kriging for fast virtual sensing. Applied Stochastic Models in Business and Industry, 38(5), 806–829. https://doi.org/10.1002/asmb.2697

Li, S., Griffith, D. A., & Shu, H. (2020). Temperature prediction based on a space–time regression-kriging model. Journal of Applied Statistics, 47(7), 1168–1190. https://doi.org/10.1080/02664763.2019.1671962

Medeiros, E. S. D., De Lima, R. R., Olinda, R. A. D., Dantas, L. G., & Santos, C. A. C. D. (2019). Space–Time Kriging of Precipitation: Modeling the Large-Scale Variation with Model GAMLSS. Water, 11(11), 2368. https://doi.org/10.3390/w11112368

O’Rourke, S., & Kelly, G. E. (2015). Spatio-temporal Modelling of Forest Growth Spanning 50 Years – The Effects of Different Thinning Strategies. Procedia Environmental Sciences, 26, 101–104. https://doi.org/10.1016/j.proenv.2015.05.008

Osman, A. I., Chen, L., Yang, M., Msigwa, G., Farghali, M., Fawzy, S., Rooney, D. W., & Yap, P.-S. (2023). Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environmental Chemistry Letters, 21(2), 741–764. https://doi.org/10.1007/s10311-022-01532-8

Pambudi, N. A., Firdaus, R. A., Rizkiana, R., Ulfa, D. K., Salsabila, M. S., Suharno, & Sukatiman. (2023). Renewable Energy in Indonesia: Current Status, Potential, and Future Development. Sustainability, 15(3), 2342. https://doi.org/10.3390/su15032342

Rahmawati, N. (2020). Space-time variogram for daily rainfall estimates using rain gauges and satellite data in mountainous tropical Island of Bali, Indonesia (Preliminary Study). Journal of Hydrology, 590, 125177. https://doi.org/10.1016/j.jhydrol.2020.125177

Sadiq, L. S., Hashim, Z., & Osman, M. (2019). The Impact of Heat on Health and Productivity among Maize Farmers in a Tropical Climate Area. Journal of Environmental and Public Health, 2019(1), 1–7. https://doi.org/10.1155/2019/9896410

Van Zoest, V., Osei, F. B., Hoek, G., & Stein, A. (2020). Spatio-temporal regression kriging for modelling urban NO2 concentrations. International Journal of Geographical Information Science, 34(5), 851–865. https://doi.org/10.1080/13658816.2019.1667501

Yuan, X., Li, S., Chen, J., Yu, H., Yang, T., Wang, C., Huang, S., Chen, H., & Ao, X. (2024). Impacts of Global Climate Change on Agricultural Production: A Comprehensive Review. Agronomy, 14(7), 1360. https://doi.org/10.3390/agronomy14071360

Zateroglu, M. T. (2021). Evaluating The Sunshine Duration Characteristics In Association With Other Climate Variables. European Journal of Science and Technology, Avrupa Bilim Ve Teknoloji Dergisi(29), 200–207. https://doi.org/10.31590/ejosat.1022639

Zhao, J., Li, C., Yang, T., Tang, Y., Yin, Y., Luan, X., & Sun, S. (2020). Estimation of high spatiotemporal resolution actual evapotranspiration by combining the SWH model with the METRIC model. Journal of Hydrology, 586, 124883. https://doi.org/10.1016/j.jhydrol.2020.124883




DOI: https://doi.org/10.31764/jtam.v9i4.32048

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Salma Fitri Nugroho, Rahma Fitriani, Atiek Iriany

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: