Mapping Food Insecurity: Spatial Modelling of Undernourishment Prevalence in Indonesia using Geographically Weighted Regression
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Anselin, L. (1988). Spatial Econometrics: Methods and Models (Vol. 4). Springer Netherlands. https://doi.org/10.1007/978-94-015-7799-1
Arbia, G. (2006). Spatial Econometrics. Springer-Verlag. https://doi.org/10.1007/3-540-32305-8
Badan Pangan Nasional. (2022). Indeks Ketahanan Pangan 2022. Antimicrobial Agents and Chemotherapy, 58(12), 7250–7257.
Badan Pusat Statistik. (2024). Prevalensi Ketidakcukupan Konsumsi Pangan (Persen). Badan Pusat Statistik.
Baltagi, B. H., & Liu, L. (2024). Testing for spatial correlation under a complete bipartite network. Economics Letters, 241, 111839. https://doi.org/10.1016/j.econlet.2024.111839
BAPPENAS. (2020). Pedoman Teknis Penyusunan Rencana Aksi Tujuan Pembangunan Berkelanjutan TPB)/Sustainable Development Goals (SDGs) Edisi II.
Bivand, R. S., Pebesma, E., & Gómez-Rubio, V. (2013). Applied Spatial Data Analysis with R. Springer New York. https://doi.org/10.1007/978-1-4614-7618-4
Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28(4), 281–298. https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
Cartone, A., Panzera, D., & Postiglione, P. (2022). Regional economic disparities, spatial dependence and proximity structures. Regional Science Policy & Practice, 14(5), 1034–1051. https://doi.org/10.1111/rsp3.12482
Duarsa, F. A., & Wijaya, R. S. (2023). Analisis Pengaruh Pengeluaran Perkapita, Rls, Ahh, Dan Jumlah Penduduk Terhadap Ketimpangan Distribusi Pendapatan. Equilibria Pendidikan: Jurnal Ilmiah Pendidikan Ekonomi, 8(2), 117–124. https://doi.org/10.26877/ep.v8i2.17306
Ejiohuo, O., Onyeaka, H., Unegbu, K. C., Chikezie, O. G., Odeyemi, O. A., Lawal, A., & Odeyemi, O. A. (2024). Nourishing the Mind: How Food Security Influences Mental Wellbeing. Nutrients, 16(4), 501. https://doi.org/10.3390/nu16040501
FAO, IFAD, UNICEF, WFP, W. (2021). The State of Food Security and Nutrition in the World 2021.
Global Hunger Index. (2024). Global Hunger Index Indonesia.
Istiqomah, N. (2022). Pengaruh Ketidakcukupan Konsumsi Pangan, Kerawanan Pangan, Dan Keragaman Pangan Terhadap Penurunan Prevalensi Stuntingdi Indonesia. Bestari : Buletin Statistika Dan Aplikasi Terkini, II(2), 29–41. https://bestari.bpskaltim.com/index.php/bestari-bpskaltim/article/download/48/33/490?utm_source=chatgpt.com
Kim, J. H. (2019). Multicollinearity and misleading statistical results. Korean Journal of Anesthesiology, 72(6), 558–569. https://doi.org/10.4097/kja.19087
Marcella Gloria Leto Bele Hermanto, Putri, E. M., & Fitriani, F. (2022). Pemodelan Geographically Weighted Regression pada Kasus Stunting di Provinsi Nusa Tenggara Timur Tahun 2020. Jurnal Statistika Dan Aplikasinya, 6(2), 179–191. https://doi.org/10.21009/jsa.06204
Meilinna, T. Z., Alfunnuria, V. S., Safira, Y. E., & Kholid, M. K. A. (2023). Pengaruh usia harapan hidup, rata-rata lama sekolah, dan pengeluaran per kapita terhadap IPM. Jurnal Ekonomi, Bisnis Dan Manajemen, 3(1), 12–29. https://doi.org/10.58192/ebismen.v3i1.1613
Mejia, S. A. (2023). Global inequities in the prevalence of undernourishment. Social Science Quarterly, 104(3), 329–344. https://doi.org/10.1111/ssqu.13250
Mizumoto, A. (2023). Calculating the Relative Importance of Multiple Regression Predictor Variables Using Dominance Analysis and Random Forests. Language Learning, 73(1), 161–196. https://doi.org/10.1111/lang.12518
Mumtaza, M. (2024). Hubungan Ketahanan Pangan dan Keragaman Pangan dengan Kejadian Stunting Balita Usia 24-59 Bulan. Media Gizi Kesmas, 13(1), 93–101. https://doi.org/10.20473/mgk.v13i1.2024.93-101
Nizar, F., & Arif, M. (2023). Pengaruh Rata Lama Sekolah, Pengeluaran Perkapita, Pendapatan Asli Daerah, Investasi, Tingkat Pengangguran Terbuka Terhadap Tingkat Kemiskinan Di Nusa Tenggara Barat Tahun 2012-2021. Komitmen: Jurnal Ilmiah Manajemen, 4(1), 48–58. https://doi.org/10.15575/jim.v4i1.23599
Nzeh, I., Osuagwu, C., Oparaojiaku, O., Ikechi, C., & Nwokorie, U. (2024). Food Security, Income Per Capita and the Prevalence of Undernourishments in the Economic Community of West African States (ECOWAS). International Journal of Entrepreneurial Development, Education and Science Research, 8(1), 222–237. https://doi.org/10.48028/iiprds/ijedesr.v8.i1.11
Oshan, T. M., Smith, J. P., & Fotheringham, A. S. (2020). Targeting the spatial context of obesity determinants via multiscale geographically weighted regression. International Journal of Health Geographics, 19(1), 11. https://doi.org/10.1186/s12942-020-00204-6
Otsuka, Y., Agestika, L., Widyarani, Sintawardani, N., & Yamauchi, T. (2019). Risk Factors for Undernutrition and Diarrhea Prevalence in an Urban Slum in Indonesia: Focus on Water, Sanitation, and Hygiene. The American Journal of Tropical Medicine and Hygiene, 100(3), 727–732. https://doi.org/10.4269/ajtmh.18-0063
Puspita, C. D., & Agustina, N. (2020). Pola Konsumsi, Elastisitas Pendapatan, Serta Variabel-Variabel Sosial Ekonomi Yang Memengaruhi Pengeluaran Konsumsi Rumah Tangga. Seminar Nasional Official Statistics, 2019(1), 700–709. https://doi.org/10.34123/semnasoffstat.v2019i1.46
Rahmanto, F., Purnomo, E. P., & Kasiwi, A. N. (2020). Food Diversification: Strengthening Strategic Efforts to Reduce Social Inequality through Sustainable Food Security Development in Indonesia. Caraka Tani: Journal of Sustainable Agriculture, 36(1), 33. https://doi.org/10.20961/carakatani.v36i1.41202
Rahmila, Y. I., Prasetyo, L. B., Kusmana, C., Suyadi, Basyuni, M., Pranoto, B., Rahmania, R., Halwany, W., Faubiany, V., Susantoro, T. M., Winarso, G., Efiyanti, L., & Indrawan, D. A. (2024). Spatial analysis of mangrove ecosystem dynamics in Banyuwangi: a geographically weighted regression approach. Forest Science and Technology, 21(1), 38–50. https://doi.org/10.1080/21580103.2024.2438602
Rahut, D. B., Aryal, J. P., Manchanda, N., & Sonobe, T. (2022). Expectations for household food security in the coming decades: A global scenario. In Future Foods (pp. 107–131). Elsevier. https://doi.org/10.1016/B978-0-323-91001-9.00002-5
Serefoglu Cabuk, K., Cengiz, S. K., Guler, M. G., Topcu, H., Cetin Efe, A., Ulas, M. G., & Poslu Karademir, F. (2024). Chasing the objective upper eyelid symmetry formula; R2, RMSE, POC, MAE, and MSE. International Ophthalmology, 44(1), 303. https://doi.org/10.1007/s10792-024-03157-y
Shareef, F., Ramzan Sheikh, M., & Ejaz, M. (2023). Food Security and Economic Growth: Tracing Food Demand and Supply Factors to Mitigate Prevalence of Undernourishment in Asian Countries. Journal of Policy Research, 9(1), 156–168. https://zenodo.org/records/7823995
Suciptawati, N. L. P., Sugiantari, N. M. S., & Susilawati, M. (2023). Penerapan Metode Geographically Weighted Regression (Gwr) Pada Kasus Penyakit Covid-19 Di Provinsi Bali. E-Jurnal Matematika, 12(1), 9. https://doi.org/10.24843/mtk.2023.v12.i01.p393
Suryana, A., Hartono, M. D., & Suryana, M. R. (2021). Impacts of the COVID-19 pandemic on food and nutrition security in Indonesia. IOP Conference Series: Earth and Environmental Science, 892(1), 012033. https://doi.org/10.1088/1755-1315/892/1/012033
Sutherland, C., Hare, D., Johnson, P. J., Linden, D. W., Montgomery, R. A., & Droge, E. (2023). Practical advice on variable selection and reporting using Akaike information criterion. Proceedings of the Royal Society B: Biological Sciences, 290(2007). https://doi.org/10.1098/rspb.2023.1261
Tempo.co. (2025). Kasus Keracunan Makanan Program Makan Bergizi Gratis di Sukoharjo: Apa yang Bisa Jadi Penyebabnya?
Todaro, Michael P.; Smith, S. C. (2012). Economic Development (11th Editi). Pearson Education.
Wei, Q., Zhang, L., Duan, W., & Zhen, Z. (2019). Global and Geographically and Temporally Weighted Regression Models for Modeling PM2.5 in Heilongjiang, China from 2015 to 2018. International Journal of Environmental Research and Public Health, 16(24), 5107. https://doi.org/10.3390/ijerph16245107
Zhang, L., & Shi, H. (2004). Local Modeling of Tree Growth by Geographically Weighted Regression. Forest Science, 50(2), 225–244. https://doi.org/10.1093/forestscience/50.2.225
Zhang, M., & Liu, Y. (2022). Influence of digital finance and green technology innovation on China’s carbon emission efficiency: Empirical analysis based on spatial metrology. Science of The Total Environment, 838, 156463. https://doi.org/10.1016/j.scitotenv.2022.156463
DOI: https://doi.org/10.31764/jtam.v9i4.32063
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Toha Saifudin, Nur Chamidah, Fidela Sahda Ilona Ramadhina, Ilham Maulana Al Hasri, Nadya Lovita Hana Trisa, Hanny Valida, Muhammad Daffa Bintang Setyawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office:



















2.jpg)
