Mapping Food Insecurity: Spatial Modelling of Undernourishment Prevalence in Indonesia using Geographically Weighted Regression

Toha Saifudin, Nur Chamidah, Fidela Sahda Ilona Ramadhina, Ilham Maulana Al Hasri, Nadya Lovita Hana Trisa, Hanny Valida, Muhammad Daffa Bintang Setyawan

Abstract


Undernourishment is a major global issue, with significant impact observed in Indonesia. A method of assessing the prevalence of energy deficiency resulting from inadequate nutrition is through the Prevalence of Undernourishment (PoU) index. From 2019 to 2022, Indonesia's PoU increased gradually, reaching 10.21% in 2022, indicating growing undernourishment and unstable food availability. This study aims to utilize Geographically Weighted Regression (GWR) to identify and analyze the factors contributing to undernourishment. The data were obtained from the Central Bureau of Statistics (BPS) in 2024, covering 38 provinces in Indonesia. This study examined six factors: per capita spending, access to potable water, mean years of schooling, access to adequate sanitation, college participation rate, and mean food expenditure. The findings show that the GWR model outperformed the conventional model, demonstrating greater explanatory power by accounting for 96.1% of the spatial variation in undernourishment and achieving the lowest AIC value of 176.7052. These findings highlight the need for region-specific food security policies, particularly in eastern Indonesia. The results can inform targeted government interventions and guide future spatial econometric research on food security.

Keywords


Undernourishment; Geographically Weighted Regression; Prevalence of Undernourishment.

Full Text:

DOWNLOAD [PDF]

References


Anselin, L. (1988). Spatial Econometrics: Methods and Models (Vol. 4). Springer Netherlands. https://doi.org/10.1007/978-94-015-7799-1

Arbia, G. (2006). Spatial Econometrics. Springer-Verlag. https://doi.org/10.1007/3-540-32305-8

Badan Pangan Nasional. (2022). Indeks Ketahanan Pangan 2022. Antimicrobial Agents and Chemotherapy, 58(12), 7250–7257.

Badan Pusat Statistik. (2024). Prevalensi Ketidakcukupan Konsumsi Pangan (Persen). Badan Pusat Statistik.

Baltagi, B. H., & Liu, L. (2024). Testing for spatial correlation under a complete bipartite network. Economics Letters, 241, 111839. https://doi.org/10.1016/j.econlet.2024.111839

BAPPENAS. (2020). Pedoman Teknis Penyusunan Rencana Aksi Tujuan Pembangunan Berkelanjutan TPB)/Sustainable Development Goals (SDGs) Edisi II.

Bivand, R. S., Pebesma, E., & Gómez-Rubio, V. (2013). Applied Spatial Data Analysis with R. Springer New York. https://doi.org/10.1007/978-1-4614-7618-4

Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28(4), 281–298. https://doi.org/10.1111/j.1538-4632.1996.tb00936.x

Cartone, A., Panzera, D., & Postiglione, P. (2022). Regional economic disparities, spatial dependence and proximity structures. Regional Science Policy & Practice, 14(5), 1034–1051. https://doi.org/10.1111/rsp3.12482

Duarsa, F. A., & Wijaya, R. S. (2023). Analisis Pengaruh Pengeluaran Perkapita, Rls, Ahh, Dan Jumlah Penduduk Terhadap Ketimpangan Distribusi Pendapatan. Equilibria Pendidikan: Jurnal Ilmiah Pendidikan Ekonomi, 8(2), 117–124. https://doi.org/10.26877/ep.v8i2.17306

Ejiohuo, O., Onyeaka, H., Unegbu, K. C., Chikezie, O. G., Odeyemi, O. A., Lawal, A., & Odeyemi, O. A. (2024). Nourishing the Mind: How Food Security Influences Mental Wellbeing. Nutrients, 16(4), 501. https://doi.org/10.3390/nu16040501

FAO, IFAD, UNICEF, WFP, W. (2021). The State of Food Security and Nutrition in the World 2021.

Global Hunger Index. (2024). Global Hunger Index Indonesia.

Istiqomah, N. (2022). Pengaruh Ketidakcukupan Konsumsi Pangan, Kerawanan Pangan, Dan Keragaman Pangan Terhadap Penurunan Prevalensi Stuntingdi Indonesia. Bestari : Buletin Statistika Dan Aplikasi Terkini, II(2), 29–41. https://bestari.bpskaltim.com/index.php/bestari-bpskaltim/article/download/48/33/490?utm_source=chatgpt.com

Kim, J. H. (2019). Multicollinearity and misleading statistical results. Korean Journal of Anesthesiology, 72(6), 558–569. https://doi.org/10.4097/kja.19087

Marcella Gloria Leto Bele Hermanto, Putri, E. M., & Fitriani, F. (2022). Pemodelan Geographically Weighted Regression pada Kasus Stunting di Provinsi Nusa Tenggara Timur Tahun 2020. Jurnal Statistika Dan Aplikasinya, 6(2), 179–191. https://doi.org/10.21009/jsa.06204

Meilinna, T. Z., Alfunnuria, V. S., Safira, Y. E., & Kholid, M. K. A. (2023). Pengaruh usia harapan hidup, rata-rata lama sekolah, dan pengeluaran per kapita terhadap IPM. Jurnal Ekonomi, Bisnis Dan Manajemen, 3(1), 12–29. https://doi.org/10.58192/ebismen.v3i1.1613

Mejia, S. A. (2023). Global inequities in the prevalence of undernourishment. Social Science Quarterly, 104(3), 329–344. https://doi.org/10.1111/ssqu.13250

Mizumoto, A. (2023). Calculating the Relative Importance of Multiple Regression Predictor Variables Using Dominance Analysis and Random Forests. Language Learning, 73(1), 161–196. https://doi.org/10.1111/lang.12518

Mumtaza, M. (2024). Hubungan Ketahanan Pangan dan Keragaman Pangan dengan Kejadian Stunting Balita Usia 24-59 Bulan. Media Gizi Kesmas, 13(1), 93–101. https://doi.org/10.20473/mgk.v13i1.2024.93-101

Nizar, F., & Arif, M. (2023). Pengaruh Rata Lama Sekolah, Pengeluaran Perkapita, Pendapatan Asli Daerah, Investasi, Tingkat Pengangguran Terbuka Terhadap Tingkat Kemiskinan Di Nusa Tenggara Barat Tahun 2012-2021. Komitmen: Jurnal Ilmiah Manajemen, 4(1), 48–58. https://doi.org/10.15575/jim.v4i1.23599

Nzeh, I., Osuagwu, C., Oparaojiaku, O., Ikechi, C., & Nwokorie, U. (2024). Food Security, Income Per Capita and the Prevalence of Undernourishments in the Economic Community of West African States (ECOWAS). International Journal of Entrepreneurial Development, Education and Science Research, 8(1), 222–237. https://doi.org/10.48028/iiprds/ijedesr.v8.i1.11

Oshan, T. M., Smith, J. P., & Fotheringham, A. S. (2020). Targeting the spatial context of obesity determinants via multiscale geographically weighted regression. International Journal of Health Geographics, 19(1), 11. https://doi.org/10.1186/s12942-020-00204-6

Otsuka, Y., Agestika, L., Widyarani, Sintawardani, N., & Yamauchi, T. (2019). Risk Factors for Undernutrition and Diarrhea Prevalence in an Urban Slum in Indonesia: Focus on Water, Sanitation, and Hygiene. The American Journal of Tropical Medicine and Hygiene, 100(3), 727–732. https://doi.org/10.4269/ajtmh.18-0063

Puspita, C. D., & Agustina, N. (2020). Pola Konsumsi, Elastisitas Pendapatan, Serta Variabel-Variabel Sosial Ekonomi Yang Memengaruhi Pengeluaran Konsumsi Rumah Tangga. Seminar Nasional Official Statistics, 2019(1), 700–709. https://doi.org/10.34123/semnasoffstat.v2019i1.46

Rahmanto, F., Purnomo, E. P., & Kasiwi, A. N. (2020). Food Diversification: Strengthening Strategic Efforts to Reduce Social Inequality through Sustainable Food Security Development in Indonesia. Caraka Tani: Journal of Sustainable Agriculture, 36(1), 33. https://doi.org/10.20961/carakatani.v36i1.41202

Rahmila, Y. I., Prasetyo, L. B., Kusmana, C., Suyadi, Basyuni, M., Pranoto, B., Rahmania, R., Halwany, W., Faubiany, V., Susantoro, T. M., Winarso, G., Efiyanti, L., & Indrawan, D. A. (2024). Spatial analysis of mangrove ecosystem dynamics in Banyuwangi: a geographically weighted regression approach. Forest Science and Technology, 21(1), 38–50. https://doi.org/10.1080/21580103.2024.2438602

Rahut, D. B., Aryal, J. P., Manchanda, N., & Sonobe, T. (2022). Expectations for household food security in the coming decades: A global scenario. In Future Foods (pp. 107–131). Elsevier. https://doi.org/10.1016/B978-0-323-91001-9.00002-5

Serefoglu Cabuk, K., Cengiz, S. K., Guler, M. G., Topcu, H., Cetin Efe, A., Ulas, M. G., & Poslu Karademir, F. (2024). Chasing the objective upper eyelid symmetry formula; R2, RMSE, POC, MAE, and MSE. International Ophthalmology, 44(1), 303. https://doi.org/10.1007/s10792-024-03157-y

Shareef, F., Ramzan Sheikh, M., & Ejaz, M. (2023). Food Security and Economic Growth: Tracing Food Demand and Supply Factors to Mitigate Prevalence of Undernourishment in Asian Countries. Journal of Policy Research, 9(1), 156–168. https://zenodo.org/records/7823995

Suciptawati, N. L. P., Sugiantari, N. M. S., & Susilawati, M. (2023). Penerapan Metode Geographically Weighted Regression (Gwr) Pada Kasus Penyakit Covid-19 Di Provinsi Bali. E-Jurnal Matematika, 12(1), 9. https://doi.org/10.24843/mtk.2023.v12.i01.p393

Suryana, A., Hartono, M. D., & Suryana, M. R. (2021). Impacts of the COVID-19 pandemic on food and nutrition security in Indonesia. IOP Conference Series: Earth and Environmental Science, 892(1), 012033. https://doi.org/10.1088/1755-1315/892/1/012033

Sutherland, C., Hare, D., Johnson, P. J., Linden, D. W., Montgomery, R. A., & Droge, E. (2023). Practical advice on variable selection and reporting using Akaike information criterion. Proceedings of the Royal Society B: Biological Sciences, 290(2007). https://doi.org/10.1098/rspb.2023.1261

Tempo.co. (2025). Kasus Keracunan Makanan Program Makan Bergizi Gratis di Sukoharjo: Apa yang Bisa Jadi Penyebabnya?

Todaro, Michael P.; Smith, S. C. (2012). Economic Development (11th Editi). Pearson Education.

Wei, Q., Zhang, L., Duan, W., & Zhen, Z. (2019). Global and Geographically and Temporally Weighted Regression Models for Modeling PM2.5 in Heilongjiang, China from 2015 to 2018. International Journal of Environmental Research and Public Health, 16(24), 5107. https://doi.org/10.3390/ijerph16245107

Zhang, L., & Shi, H. (2004). Local Modeling of Tree Growth by Geographically Weighted Regression. Forest Science, 50(2), 225–244. https://doi.org/10.1093/forestscience/50.2.225

Zhang, M., & Liu, Y. (2022). Influence of digital finance and green technology innovation on China’s carbon emission efficiency: Empirical analysis based on spatial metrology. Science of The Total Environment, 838, 156463. https://doi.org/10.1016/j.scitotenv.2022.156463




DOI: https://doi.org/10.31764/jtam.v9i4.32063

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Toha Saifudin, Nur Chamidah, Fidela Sahda Ilona Ramadhina, Ilham Maulana Al Hasri, Nadya Lovita Hana Trisa, Hanny Valida, Muhammad Daffa Bintang Setyawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: