Spatial Modelling of Child Malnutrition in East Java using Geographically Weighted Regression
Abstract
Child malnutrition is a persistent public health issue in East Java, Indonesia, characterized by uneven spatial distribution across its 38 regencies and cities. This study aims to model the prevalence of malnutrition among children under five using Geographically Weighted Regression (GWR) to identify locally significant determinants. Secondary data used in this study is prevalence of child nutritional status by regencies/cities in East java, taken from the 2023 Indonesian Health Survey, incorporating seven predictor variables: low birth weight prevalence, complete immunization coverage, exclusive breastfeeding, access to improved sanitation, number of community health posts (Posyandu), access to clean water, and poverty rate. Spatial dependence and heterogeneity were confirmed through Moran’s I (p = 0.009) and Breusch-Pagan tests (p = 0.024), validating the application of GWR. Spatial dependence and heterogeneity were confirmed through Moran’s I (p = 0.009) and the Breusch-Pagan test (p = 0.024), indicating the relevance of a spatial modelling approach. The best-performing model used an adaptive bi-square kernel (CV = 0.133; R² = 94.15%). All predictors exhibited spatial variability with statistically significant effects in specific regions (p < 0.05). In Tuban Regency, for instance, five variables including low birth weight, breastfeeding practices, and sanitation were significantly associated with malnutrition rates. These findings suggest that the relationship between predictors and malnutrition is not uniform across regions. GWR enables the identification of local patterns often overlooked by global models, offering a more accurate understanding of spatial disparities. The results provide strong evidence for developing targeted, region-specific public health strategies to address child malnutrition more effectively in East Java
Keywords
Full Text:
DOWNLOAD [PDF]References
Agustina, F. M., Wasono, R., & Darsyah, M. Y. (2015). Pemodelan Geographically Weighted Regression (GWR) Pada Tingkat Kemiskinan di Provinsi Jawa Tengah. Statistika, 3(2), 67–74. https://doi.org/10.26714/jsunimus.3.2.2015.%25p
Andresen, M. A. (2022). Theorizing globally, but analyzing locally: the importance of geographically weighted regression in crime analysis. Crime Science, 11(1), 1–17. https://doi.org/10.1186/s40163-022-00173-0
Azkia, Q., & Setiawan, E. P. (2022). Pemodelan Gizi Buruk pada Balita di Provinsi Jawa Timur Menggunakan Geographically Weighted Regression (GWR). Proceedings of the National Seminar on Mathematics, Statistics, and Its Applications, 2(2022), 302–311. http://jurnal.fmipa.unmul.ac.id/index.php/SNMSA/article/view/842
BPS. (2023). SKI Dalam Angka. In SKI Dalam Angka.
Chamidah, N., Zaman, B., Muniroh, L., & Lestari, B. (2023). Multiresponse Semiparametric Regression Model Approach To Standard Growth Charts Design for Assessing Nutritional Status of East Java Toddlers. Communications in Mathematical Biology and Neuroscience, 2023(2023), 1–23. https://doi.org/10.28919/cmbn/7814
Chandra, M. D., Irawan, E., Saragih, I. S., Windarto, A. P., & Suhendro, D. (2021). Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 2(1), 30–38. https://doi.org/10.37148/bios.v2i1.19
Ghosh, S. (2020). Factors responsible for childhood malnutrition: A review of the literature. Current Research in Nutrition and Food Science, 8(2), 360–370. https://doi.org/10.12944/CRNFSJ.8.2.01
Goals, M. D. (2004). Monitoring progress towards the world food summit and millennium development goals. In Fao.
Griffith, D. A., & Anselin, L. (1989). Spatial Econometrics: Methods and Models. Economic Geography, 65(2), 160-162. https://doi.org/10.2307/143780
Hutabarat, I. M., Saefuddin, A., Hardinsyah, H., & Djuraidah, A. (2016). Estimation of Percentage on Malnutrition Occurrences in East Java using Geographically Weighted Regression Model. Makara Journal of Health Research, 19(3), 1–8. https://doi.org/10.7454/msk.v19i3.5561
Karmakar, P. S., Pal, J., Maitra, S., Ghosh, A., Sarkar, N., Das, T., & Biswas, N. M. (2010). Prevalence of malnutrition and its correlation with various diseases in elderly patients in a tertiary care centre in eastern India. Journal of the Indian Medical Association, 108(11), 754—756. http://europepmc.org/abstract/MED/21510573
Kitaw, T. A., Abate, B. B., Derese Tilahun, B., & Haile, R. N. (2024). Geospatial pattern of level of minimum acceptable diet and its determinants among children aged 6–23 months in Ethiopia. Spatial and multiscale geographically weighted regression analysis. Frontiers in Public Health, 12(June), 1–13. https://doi.org/10.3389/fpubh.2024.1348755
Luh, N., Nariswari, A., & Witanto, S. M. (2024). Studi Pengaruh Faktor Sosial Ekonomi dan Sanitasi terhadap Prevalensi Balita Penderita Gizi Buruk ( Stunting ) di Jawa Timur dengan Analisis Regresi Linier. 2024(Senada), 812–822. https://doi.org/10.33005/senada.v4i1.340
Muche, A., Melaku, M. S., Amsalu, E. T., & Adane, M. (2021). Using geographically weighted regression analysis to cluster under-nutrition and its predictors among under-five children in Ethiopia: Evidence from demographic and health survey. PLoS ONE, 16(5 May). https://doi.org/10.1371/journal.pone.0248156
Nasution, L. M. (2020). Statistik Deskriptif. Hikmah, 14(1), 49–55. https://www.e-jurnal.staisumatera-medan.ac.id/index.php/hikmah/article/view/16
Nuryadi, Astuti, T. D., Utami, E. S., & Budiantara, M. (2017). Buku Ajar Dasar-dasar Statistik Penelitian. In Sibuku Media.
Seboka, B. T., Hailegebreal, S., Mamo, T. T., Yehualashet, D. E., Gilano, G., Kabthymer, R. H., Ewune, H. A., Kassa, R., Debisa, M. A., Yawo, M. N., Endashaw, H., Demeke, A. D., & Tesfa, G. A. (2022). Spatial trends and projections of chronic malnutrition among children under 5 years of age in Ethiopia from 2011 to 2019: a geographically weighted regression analysis. Journal of Health, Population and Nutrition, 41(1), 1–17. https://doi.org/10.1186/s41043-022-00309-7
Siswanto, S., Mirna, M., Yusran, M., Syam, U. A., & Miolo, A. S. I. (2022). Identification of Factors that Influence Stunting Cases in South Sulawesi using Geographically Weighted Regression Modeling. Jurnal Matematika, Statistika Dan Komputasi, 19(1), 100–108. https://doi.org/10.20956/j.v19i1.21617
Siti Hartina Daulay, & Elmanani Simamora. (2023). Pemodelan Faktor-Faktor Penyebab Kemiskinan Di Provinsi Sumatera Utara Menggunakan Metode Geographically Weighted Regression (Gwr). Jurnal Riset Rumpun Matematika Dan Ilmu Pengetahuan Alam, 2(1), 47–60. https://doi.org/10.55606/jurrimipa.v2i1.646
Tette, E. M. A., Sifah, E. K., & Nartey, E. T. (2015). Factors affecting malnutrition in children and the uptake of interventions to prevent the condition. BMC Pediatrics, 15(1), 1–11. https://doi.org/10.1186/s12887-015-0496-3
Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. E. (2011). Probability and Statistics for Engineers and Scientists. Pearson Education. https://books.google.co.id/books?id=PcksAAAAQBAJ
Wicaksono, D. S., Kusumasari, P. A., Fajar, H. M., Fajritia, R., Puspita Anggraini, I. G. A., & Budiasih, B. (2023). Implementasi Geographically Weighted Regression (GWR) pada Determinasi Faktor Produksi Beras di Indonesia Tahun 2021. Seminar Nasional Official Statistics, 2023(1), 537–546. https://doi.org/10.34123/semnasoffstat.v2023i1.1714
DOI: https://doi.org/10.31764/jtam.v9i4.32103
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Syifa' Azizah Putri Gunawan, Regina Fortunata, Elly Ana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office:


















2.jpg)
