Dynamical Analysis of a Fractional Order HIV/AIDS Model
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Ahmed, E., El-Sayed, A. M. A., & El-Saka, H. A. A. (2006). On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 358(1), 1–4. https://doi.org/10.1016/j.physleta.2006.04.087
Das, S., & Gupta, P. K. (2011). A mathematical model on fractional Lotka-Volterra equations. Journal of Theoretical Biology, 277(1), 1–6. https://doi.org/10.1016/j.jtbi.2011.01.034
Diethelm, K. (2010). The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, 2004, 1–30.
Hassouna, M., Ouhadan, A., & El Kinani, E. H. (2018). On the solution of fractional order SIS epidemic model. Chaos, Solitons and Fractals, 117, 168–174. https://doi.org/10.1016/j.chaos.2018.10.023
Huo, H. F., Chen, R., & Wang, X. Y. (2016). Modelling and stability of HIV/AIDS epidemic model with treatment. Applied Mathematical Modelling, 40(13–14), 6550–6559. https://doi.org/10.1016/j.apm.2016.01.054
Kemenkes RI. (2017). Stop HIV AIDS. Kementerian Kesehatan Republik Indonesia, 1–3. http://www.kemkes.go.id/development/site/depkes/pdf.php?id=1-17042500008
Li, H. L., Zhang, L., Hu, C., Jiang, Y. L., & Teng, Z. (2017). Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. Journal of Applied Mathematics and Computing, 54(1–2), 435–449. https://doi.org/10.1007/s12190-016-1017-8
Moore, E. J., Sirisubtawee, S., & Koonprasert, S. (2019). A Caputo–Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment. Advances in Difference Equations, 2019(1). https://doi.org/10.1186/s13662-019-2138-9
Nyabadza, F., Mukandavire, Z., & Hove-Musekwa, S. D. (2011). Modelling the HIV/AIDS epidemic trends in South Africa: Insights from a simple mathematical model. Nonlinear Analysis: Real World Applications, 12(4), 2091–2104. https://doi.org/10.1016/j.nonrwa.2010.12.024
Petras, I. (2011). Fractional-Orde Nonlinear System. Springer-Verlag.
Pinto, C. M. A., & Carvalho, A. R. M. (2015). Effect of drug-resistance in a fractional complex-order model for HIV infection. IFAC-PapersOnLine, 28(1), 188–189. https://doi.org/10.1016/j.ifacol.2015.05.162
Rihan, F. A. (2013). Numerical modeling of fractional-order biological systems. Abstract and Applied Analysis, 2013. https://doi.org/10.1155/2013/816803
Rihan, F. A., Baleanu, D., Lakshmanan, S., & Rakkiyappan, R. (2014). On fractional SIRC model with salmonella bacterial infection. Abstract and Applied Analysis, 2014. https://doi.org/10.1155/2014/136263
S.M., S., & A.M., Y. (2017). On a fractional-order model for HBV infection with cure of infected cells. Journal of the Egyptian Mathematical Society, 25(4), 445–451. https://doi.org/10.1016/j.joems.2017.06.003
Shaikh, A. S., & Sooppy Nisar, K. (2019). Transmission dynamics of fractional order Typhoid fever model using Caputo–Fabrizio operator. Chaos, Solitons and Fractals, 128, 355–365. https://doi.org/10.1016/j.chaos.2019.08.012
Silva, C. J., & Torres, D. F. M. (2017). Global Stability For a HIV/AIDS Model. Communications Faculty of Sciences Universitiy of Ankara Series A1 Mathematics and Statistics, 1–8.
Silva, C. J., & Torres, D. F. M. (2019). Stability of a fractional HIV/AIDS model. Mathematics and Computers in Simulation, 164, 180–190. https://doi.org/10.1016/j.matcom.2019.03.016
Solís-Pérez, J. E., Gómez-Aguilar, J. F., & Atangana, A. (2019). A fractional mathematical model of breast cancer competition model. Chaos, Solitons and Fractals, 127, 38–54. https://doi.org/10.1016/j.chaos.2019.06.027
Sweilam, N. H., AL-Mekhlafi, S. M., Mohammed, Z. N., & Baleanu, D. (2020). Optimal control for variable order fractional HIV/AIDS and malaria mathematical models with multi-time delay. Alexandria Engineering Journal, 59(5), 3149–3162. https://doi.org/10.1016/j.aej.2020.07.021
Vargas-De-León, C. (2015). Volterra-type Lyapunov functions for fractional-order epidemic systems. Communications in Nonlinear Science and Numerical Simulation, 24(1–3), 75–85. https://doi.org/10.1016/j.cnsns.2014.12.013
DOI: https://doi.org/10.31764/jtam.v5i1.3224
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Septiangga Van Nyek Perdana Putra, Agus Suryanto, Nur Shofianah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: