Analysis of Unmet Need for Health Services Based on the Percentage of Public Health Complaints with a Kernel Estimator Approach

Marisa Rifada, Dita Amelia, Jeny Praesti Setyaningrum, Niswah Septiandini, Yovita Karin Kalista, Shabrina Nareswari Dwitya

Abstract


Healthcare services are a fundamental need that governments must guarantee to ensure optimal health outcomes for all citizens. However, many individuals still face significant barriers in accessing necessary healthcare services. This quantitative research employs a spatial analysis to examine the unmet need for health services based on public health complaints, utilizing a nonparametric regression approach with Kernel estimator. The Kernel estimator method was chosen for its flexibility in capturing unstructured data patterns, allowing the analysis to better reflect real-world conditions. The study uses health complaint data from the Central Bureau of Statistics, covering 38 provinces in Indonesia in 2024. However, data from 4 provinces were incomplete, so only 34 provinces were included in the analysis. The independent variable is the percentage of public health complaints, while the dependent variable is the percentage of unmet healthcare needs. A Gaussian kernel function was applied for nonparametric regression, identified as the optimal method based on the lowest Generalized Cross Validation (GCV) value of 1.052939 at a bandwidth of 0.33. The model demonstrates high predictive accuracy, with an R² of 82.44% and a Mean Squared Error (MSE) of 30.7%. These findings provide actionable insights for targeting healthcare disparities and improving service accessibility.

Keywords


Good Health and Well-being; Kernel Estimator; Nonparametric Regression; Public Health; Reduced Inequalities.

Full Text:

DOWNLOAD [PDF]

References


Azizatin, W., & Retnaningsih, S. M. (2016). Analisis Pengendalian Kualitas Produk Botol Kode 493 Menggunakan Peta Kendali Kernel di PT. Iglas (Persero). Jurnal Sains Dan Seni ITS, 5(1). https://doi.org/10.12962/j23373520.v5i1.14689

Badan Pusat Statistik. (2023). Statistik Kesehatan 2022 (No. katalog 4201001; No. publikasi 04200.2307; ISSN 2598-5590). BPS. https://www.bps.go.id/id/publication/2023/08/31/923a16f1d75232565f1e0446/statistik-kesehatan-2022.html

Chamidah, N., & Rifada, M. (2016). Estimation of median growth curves for children up two years old based on biresponse local linear estimator. AIP Conference Proceedings, 1718. https://doi.org/10.1063/1.4943348

Choi, J. A., & Kim, O. (2021). Factors influencing unmet healthcare needs among older Korean women. International Journal of Environmental Research and Public Health, 18(13). https://doi.org/10.3390/ijerph18136862

Chong, N., Akobirshoev, I., Caldwell, J., Kaye, H. S., & Mitra, M. (2022). The relationship between unmet need for home and community-based services and health and community living outcomes. Disability and Health Journal, 15(2), 101222. https://doi.org/10.1016/j.dhjo.2021.101222

Fatharani, N. (2024). Akses Pelayanan Kesehatan di Daerah Terpencil. https://www.researchgate.net/publication/382960113

Guo, J., Dickson, S., Berencrok, L. A., Tang, S., Essien, U. R., & Hernandez, I. (2023). Racial Disparities in access to health care infastructure across US counties: A geographic information system analysis. Frontiers, 11. https://doi.org/10.3389/fpubh.2023.897007

Ko, H. (2016). Unmet healthcare needs and health status: Panel evidence from Korea. Health Policy, 120(6), 646–653. https://doi.org/10.1016/j.healthpol.2016.04.005

Lestari, B., Chamidah, N., Aydin, D., & Yilmaz, E. (2022). Reproducing Kernel Hilbert Space Approach to Multiresponse Smoothing Spline Regression Function. Symmetry, 14(11), 2227. https://doi.org/10.3390/sym14112227

Lestari, B., Fatmawati, Budiantara, I. N., & Chamidah, N. (2018). Estimation of Regression Function in Multi-Response Nonparametric Regression Model Using Smoothing Spline and Kernel Estimators. Journal of Physics: Conference Series, 1097, 012091. https://doi.org/10.1088/1742-6596/1097/1/012091

Lestari, B., Fatmawati, Budiantara, I. N., & Chamidah, N. (2019). Smoothing parameter selection method for multiresponse nonparametric regression model using smoothing spline and Kernel estimators approaches. Journal of Physics: Conference Series, 1397(1), 012064. https://doi.org/10.1088/1742-6596/1397/1/012064

Li, D., Yamada, M., Gao, D., Yang, F., & Nie, H. (2024). Spatial variations in health service utilization among migrant population: a perspective on health equity. Frontiers in Public Health, 12. https://doi.org/10.3389/fpubh.2024.1447723

Mardianto, M. F. F., Syahzaqi, I., Permana, M. R. A., Makhbubah, K. R., Vanisa, D. S., & Afifa, F. N. (2025). Prediction of Dow Jones Index, US Inflation, and Interest Rate with Kernel Estimator and Vector Error Correction Model. Jurnal Teori Dan Aplikasi Matematika, 9(2), 431–443. https://doi.org/10.31764/jtam.v9i2.28460

Mardianto, M. F. F., Tjahjono, E., & Rifada, M. (2019). Semiparametric regression based on three forms of trigonometric function in fourier series estimator. Journal of Physics: Conference Series, 1277(1), 012052. https://doi.org/10.1088/1742-6596/1277/1/012052

Maslyankov, I., & Hernández, M. (2024). The prevalence and determinants of unmet healthcare needs in Bulgaria. PLOS ONE, 19(10), e0312475. https://doi.org/10.1371/journal.pone.0312475

Pan, L., Wang, C., Cao, X., Zhu, H., & Luo, L. (2022). Unmet Healthcare Needs and Their Determining Factors among Unwell Migrants: A Comparative Study in Shanghai. International Journal of Environmental Research and Public Health, 19(9), 5499. https://doi.org/10.3390/ijerph19095499

Pangwoh, Y. Z., Tshuma, N., & Junior, E. E. (2024). Demographic, Behavioural and Clinical Characteristics of HIV-infected Adults Initiating Antiretroviral Therapy in Rural ART Clinics in the Centre Region of Cameroon. Texila International Journal of Public Health, 12(1). https://doi.org/10.21522/TIJPH.2013.12.01.Art015

Rifada, M., Chamidah, N., Ratnasari, V., & Purhadi. (2021). Estimation of nonparametric ordinal logistic regression model using local maximum likelihood estimation. Communications in Mathematical Biology and Neuroscience, 2021. https://doi.org/10.28919/cmbn/5353

Sholicha, C. N., Budiantara, I. N., & Ratna, M. (2018). Regresi Nonparametrik Spline Truncated untuk Memodelkan Persentase Unmet Need di Kabupaten Gresik. Jurnal Sains Dan Seni ITS, 7(2). https://doi.org/10.12962/j23373520.v7i2.35259

Syed, S. T., Gerber, B. S., & Sharp, L. K. (2013). Traveling towards disease: Transportation barriers to health care access. In Journal of Community Health (Vol. 38, Issue 5, pp. 976–993). https://doi.org/10.1007/s10900-013-9681-1

Utami, T. W., Chamidah, N., Saifudin, T., Lestari, B., & Aydin, D. (2025). Estimation of Biresponse Semiparametric Regression Model for Longitudinal Data Using Local Polynomial Kernel Estimator. Symmetry, 17(3). https://doi.org/10.3390/sym17030392

Vahedi, S., Torabipour, A., Takian, A., Mohammadpur, S., Olyaeemanesh, A., Kiani, M. M., & Mohamadi, E. (2021). Socioeconomic determinants of unmet need for outpatient healthcare services in Iran: a national cross-sectional study. BMC Public Health, 21(1), 457. https://doi.org/10.1186/s12889-021-10477-6

Watrianthos, R., & Suryadi, S. (2023). Distribusi Spasial Unmet Need Pelayanan Kesehatan dengan Algoritma K-Means untuk Pemetaan Provinsi di Indonesia. Bulletin of Information Technology (BIT), 4(2), 361–368. https://doi.org/10.47065/bit.v3i1




DOI: https://doi.org/10.31764/jtam.v9i4.32555

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Marisa Rifada, Dita Amelia, Jeny Praesti Setyaningrum, Niswah Septiandini, Yovita Karin Kalista, Shabrina Nareswari Dwitya

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: