Predictive Modelling of Rainfall using Deep Learning Based on Satellite Data for Flood and Drought Disaster Mitigation in Sumbawa Regency
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Ageet, S., Fink, A. H., Maranan, M., Diem, J. E., Hartter, J., Ssali, A. L., & Ayabagabo, P. (2022). Validation of Satellite Rainfall Estimates over Equatorial East Africa. Journal of Hydrometeorology, 23(2), 129–151. https://doi.org/10.1175/JHM-D-21-0145.1
Aprianto, R., Ayu Dwi Puspitasari, P., Fitriyanto, S., & Tawaqqal, A. (2024). Analisis Potensi Bencana Banjir Berdasarkan Hasil Prediksi Curah Hujan di Kabupaten Sumbawa. Titian Ilmu: Jurnal Ilmiah Multi Sciences, 16(2), 124–133. https://doi.org/10.30599/jti.v16i2.3436
Aprianto, R., Fitriyanto, S., & Nufus, H. (2024). Analisis Pola Musim Hujan dan Kemarau Berdasarkan Prediksi Curah Hujan Tahun 2024 Menggunakan Artificial Neural Network (ANN) di Kabupaten Sumbawa. Titian Ilmu: Jurnal Ilmiah Multi Sciences, 16(1), 25–32. https://doi.org/10.30599/jti.v16i1.3121
Aprianto, R., Tawaqqal, A., & Puspitasari, P. A. D. (2025). Prediksi Curah Hujan Menggunakan Metode Holt-Winters di Kabupaten Sumbawa. TItian Ilmu: Jurnal Ilmiah Multi Sciences, 17(1), 42–52. https://doi.org/https://doi.org/10.30599/eybf7238
Chen, C., Zhang, Q., Kashani, M. H., Jun, C., Bateni, S. M., Band, S. S., Dash, S. S., & Chau, K. W. (2022). Forecast of rainfall distribution based on fixed sliding window long short-term memory. Engineering Applications of Computational Fluid Mechanics, 16(1), 248–261. https://doi.org/10.1080/19942060.2021.2009374
Costa, G. E. de M. e., Menezes Filho, F. C. M. de, Canales, F. A., Fava, M. C., Brandão, A. R. A., & de Paes, R. P. (2023). Assessment of Time Series Models for Mean Discharge Modeling and Forecasting in a Sub-Basin of the Paranaíba River, Brazil. Hydrology, 10(11), 1-20. https://doi.org/10.3390/hydrology10110208
Deng, A. A. N., Nursetiawan, ., Ikhsan, J., Riyadi, S., & Zaki, A. (2024). Intelligent Forecasting of Flooding Intensity Using Machine Learning. Civil Engineering Journal, 10(10), 3269–3291. https://doi.org/10.28991/CEJ-2024-010-10-010
Dong, J., Zeng, W., Wu, L., Huang, J., Gaiser, T., & Srivastava, A. K. (2023). Enhancing short-term forecasting of daily precipitation using numerical weather prediction bias correcting with XGBoost in different regions of China. Engineering Applications of Artificial Intelligence, 117, 105579. https://doi.org/10.1016/j.engappai.2022.105579
Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shelev, G., Gilon, O., Qualls, L. M., Gupta, H. V., & Nearing, G. S. (2022). Deep learning rainfall-runoff predictions of extreme events. Hydrology and Earth System Sciences, 26(13), 3377–3392. https://doi.org/10.5194/hess-26-3377-2022
Ghazvinian, M., Zhang, Y. U., Hamill, T. M., Seo, D.-J., & Fernando, N. (2022). Improving Probabilistic Quantitative Precipitation Forecasts Using Short Training Data through Artificial Neural Networks. Journal of Hydrometeorology, 23(9), 1365–1382. https://doi.org/10.1175/JHM-D-22-0021.1
Giang, N. H., Wang, Y., Hieu, T. D., Phuong, L. A., & Thinh, N. T. (2022). Monthly precipitation prediction using neural network algorithms in the Thua Thien Hue Province. Journal of Water and Climate Change, 13(5), 2011–2033. https://doi.org/10.2166/wcc.2022.271
Giro, R. A., Luini, L., Riva, C. G., Pimienta-Del-Valle, D., & Riera Salis, J. M. (2022). Real-Time Rainfall Estimation Using Satellite Signals: Development and Assessment of a New Procedure. IEEE Transactions on Instrumentation and Measurement, 71, 1-10. https://doi.org/10.1109/TIM.2022.3165840
Global Forest Watch. (2025, March 18). Tree cover loss in Indonesia/West Nusa Tenggara/Sumbawa Region. Global Forest Watch. Https://Www.Globalforestwatch.Org/Dashboards/Country/IDN/20/10/?Lang=id&location=WyJjb3VudHJ5IiwiSUROIiwiMjAiLCIxMCJd&map=eyJjYW5Cb3VuZCI6dHJ1ZX0%3D. www.mongabay.co.id
Hassan, M. M., Rony, M. A. T., Khan, M. A. R., Hassan, M. M., Yasmin, F., Nag, A., Zarin, T. H., Bairagi, A. K., Alshathri, S., & El-Shafai, W. (2023). Machine Learning-Based Rainfall Prediction: Unveiling Insights and Forecasting for Improved Preparedness. IEEE Access, 11, 132196–132222. https://doi.org/10.1109/ACCESS.2023.3333876
Hill, A. J., & Schumacher, R. S. (2021). Forecasting Excessive Rainfall with Random Forests and a Deterministic Convection-Allowing Model. Weather and Forecasting, 36(5), 1693–1711. https://doi.org/10.1175/WAF-D-21-0026.1
Ishida, K., Ercan, A., Nagasato, T., Kiyama, M., & Amagasaki, M. (2024). Use of one-dimensional CNN for input data size reduction in LSTM for improved computational efficiency and accuracy in hourly rainfall-runoff modeling. Journal of Environmental Management, 359, 120931. https://doi.org/https://doi.org/10.1016/j.jenvman.2024.120931.
Kagabo, J., Kattel, G. R., Kazora, J., Shangwe, C. N., & Habiyakare, F. (2024). Application of Machine Learning Algorithms in Predicting Extreme Rainfall Events in Rwanda. Atmosphere, 15(6), 1-22. https://doi.org/10.3390/atmos15060691
Khan, M. M. H., Mustafa, M. R. U., Hossain, M. S., Shams, S., & Julius, A. D. (2023). Short-Term and Long-Term Rainfall Forecasting Using ARIMA Model. International Journal of Environmental Science and Development, 14(5), 292–298. https://doi.org/10.18178/ijesd.2023.14.5.1447
Kumar, V., Kedam, N., Sharma, K. V., Khedher, K. M., & Alluqmani, A. E. (2023). A Comparison of Machine Learning Models for Predicting Rainfall in Urban Metropolitan Cities. Sustainability (Switzerland), 15(18), 13724. https://doi.org/10.3390/su151813724
Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., Coxon, G., & Dadson, S. J. (2021). Benchmarking data-driven rainfall-runoff models in Great Britain: A comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydrology and Earth System Sciences, 25(10), 5517–5534. https://doi.org/10.5194/hess-25-5517-2021
Mokhtar, A., Jalali, M., He, H., Al-Ansari, N., Elbeltagi, A., Alsafadi, K., Abdo, H. G., Sammen, S. S., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2021). Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms. IEEE Access, 9, 65503–65523. https://doi.org/10.1109/ACCESS.2021.3074305
Prodhan, F. A., Zhang, J., Hasan, S. S., Pangali Sharma, T. P., & Mohana, H. P. (2022). A review of machine learning methods for drought hazard monitoring and forecasting: Current research trends, challenges, and future research directions. Environmental Modelling & Software, 149, 105327. https://doi.org/10.1016/j.envsoft.2022.105327
Shen, W., Chen, S., Xu, J., Zhang, Y., Liang, X., & Zhang, Y. (2024). Enhancing Extreme Precipitation Forecasts through Machine Learning Quality Control of Precipitable Water Data from Satellite FengYun-2E: A Comparative Study of Minimum Covariance Determinant and Isolation Forest Methods. Remote Sensing, 16(16), 3104-3136. https://doi.org/10.3390/rs16163104
Xu, Y., Hu, C., Wu, Q., Jian, S., Li, Z., Chen, Y., Zhang, G., Zhang, Z., & Wang, S. (2022). Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation. Journal of Hydrology, 608, 127553. https://doi.org/10.1016/j.jhydrol.2022.127553
Zhao, W., Zhang, Z., Khodadadi, N., & Wang, L. (2025). A deep learning model coupled with metaheuristic optimization for urban rainfall prediction. Journal of Hydrology, 651(132596). 1-23 https://doi.org/10.1016/j.jhydrol.2024.132596
DOI: https://doi.org/10.31764/jtam.v9i4.32556
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Romi Aprianto, Armansyah Putra, Hayatun Nufus

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: