Predictive Modelling of Rainfall using Deep Learning Based on Satellite Data for Flood and Drought Disaster Mitigation in Sumbawa Regency

Romi Aprianto, Armansyah Putra, Hayatun Nufus

Abstract


Floods and droughts in Sumbawa Regency have intensified in frequency and impact over recent decades, driven by complex climatic interactions and anthropogenic activities. Accurate rainfall forecasting is critical for effective disaster risk reduction and water resource planning. This study develops a Long Short-Term Memory (LSTM) model that integrates satellite-derived rainfall with global climate indicators (Sea Surface Temperature (SST) and Southern Oscillation Index (SOI)) to enhance monthly rainfall prediction. Compared to statistical baselines (SARIMAX: RMSE ≈ 92 mm) and machine learning baselines (Random Forest: RMSE ≈ 84 mm), the multivariate LSTM achieves superior performance with RMSE = 65.2 mm (R = 0.82), reducing forecast error by ~25%. The 12-month forecast for June 2025–May 2026 indicates an extended dry season (June–September) followed by intense rainfall peaking at 266 mm in February 2026, highlighting risks of hydrometeorological extremes. By pioneering the fusion of satellite data and LSTM in Indonesia, this research provides actionable insights for early warning systems and supports climate adaptation strategies in water management, agriculture, and disaster preparedness. The model offers a scalable framework for operational rainfall prediction in climate-vulnerable tropical regions.

Keywords


Rainfall Forecasting; LSTM; Satellite Data; Disaster Mitigation; Sumbawa.

Full Text:

DOWNLOAD [PDF]

References


Ageet, S., Fink, A. H., Maranan, M., Diem, J. E., Hartter, J., Ssali, A. L., & Ayabagabo, P. (2022). Validation of Satellite Rainfall Estimates over Equatorial East Africa. Journal of Hydrometeorology, 23(2), 129–151. https://doi.org/10.1175/JHM-D-21-0145.1

Aprianto, R., Ayu Dwi Puspitasari, P., Fitriyanto, S., & Tawaqqal, A. (2024). Analisis Potensi Bencana Banjir Berdasarkan Hasil Prediksi Curah Hujan di Kabupaten Sumbawa. Titian Ilmu: Jurnal Ilmiah Multi Sciences, 16(2), 124–133. https://doi.org/10.30599/jti.v16i2.3436

Aprianto, R., Fitriyanto, S., & Nufus, H. (2024). Analisis Pola Musim Hujan dan Kemarau Berdasarkan Prediksi Curah Hujan Tahun 2024 Menggunakan Artificial Neural Network (ANN) di Kabupaten Sumbawa. Titian Ilmu: Jurnal Ilmiah Multi Sciences, 16(1), 25–32. https://doi.org/10.30599/jti.v16i1.3121

Aprianto, R., Tawaqqal, A., & Puspitasari, P. A. D. (2025). Prediksi Curah Hujan Menggunakan Metode Holt-Winters di Kabupaten Sumbawa. TItian Ilmu: Jurnal Ilmiah Multi Sciences, 17(1), 42–52. https://doi.org/https://doi.org/10.30599/eybf7238

Chen, C., Zhang, Q., Kashani, M. H., Jun, C., Bateni, S. M., Band, S. S., Dash, S. S., & Chau, K. W. (2022). Forecast of rainfall distribution based on fixed sliding window long short-term memory. Engineering Applications of Computational Fluid Mechanics, 16(1), 248–261. https://doi.org/10.1080/19942060.2021.2009374

Costa, G. E. de M. e., Menezes Filho, F. C. M. de, Canales, F. A., Fava, M. C., Brandão, A. R. A., & de Paes, R. P. (2023). Assessment of Time Series Models for Mean Discharge Modeling and Forecasting in a Sub-Basin of the Paranaíba River, Brazil. Hydrology, 10(11), 1-20. https://doi.org/10.3390/hydrology10110208

Deng, A. A. N., Nursetiawan, ., Ikhsan, J., Riyadi, S., & Zaki, A. (2024). Intelligent Forecasting of Flooding Intensity Using Machine Learning. Civil Engineering Journal, 10(10), 3269–3291. https://doi.org/10.28991/CEJ-2024-010-10-010

Dong, J., Zeng, W., Wu, L., Huang, J., Gaiser, T., & Srivastava, A. K. (2023). Enhancing short-term forecasting of daily precipitation using numerical weather prediction bias correcting with XGBoost in different regions of China. Engineering Applications of Artificial Intelligence, 117, 105579. https://doi.org/10.1016/j.engappai.2022.105579

Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shelev, G., Gilon, O., Qualls, L. M., Gupta, H. V., & Nearing, G. S. (2022). Deep learning rainfall-runoff predictions of extreme events. Hydrology and Earth System Sciences, 26(13), 3377–3392. https://doi.org/10.5194/hess-26-3377-2022

Ghazvinian, M., Zhang, Y. U., Hamill, T. M., Seo, D.-J., & Fernando, N. (2022). Improving Probabilistic Quantitative Precipitation Forecasts Using Short Training Data through Artificial Neural Networks. Journal of Hydrometeorology, 23(9), 1365–1382. https://doi.org/10.1175/JHM-D-22-0021.1

Giang, N. H., Wang, Y., Hieu, T. D., Phuong, L. A., & Thinh, N. T. (2022). Monthly precipitation prediction using neural network algorithms in the Thua Thien Hue Province. Journal of Water and Climate Change, 13(5), 2011–2033. https://doi.org/10.2166/wcc.2022.271

Giro, R. A., Luini, L., Riva, C. G., Pimienta-Del-Valle, D., & Riera Salis, J. M. (2022). Real-Time Rainfall Estimation Using Satellite Signals: Development and Assessment of a New Procedure. IEEE Transactions on Instrumentation and Measurement, 71, 1-10. https://doi.org/10.1109/TIM.2022.3165840

Global Forest Watch. (2025, March 18). Tree cover loss in Indonesia/West Nusa Tenggara/Sumbawa Region. Global Forest Watch. Https://Www.Globalforestwatch.Org/Dashboards/Country/IDN/20/10/?Lang=id&location=WyJjb3VudHJ5IiwiSUROIiwiMjAiLCIxMCJd&map=eyJjYW5Cb3VuZCI6dHJ1ZX0%3D. www.mongabay.co.id

Hassan, M. M., Rony, M. A. T., Khan, M. A. R., Hassan, M. M., Yasmin, F., Nag, A., Zarin, T. H., Bairagi, A. K., Alshathri, S., & El-Shafai, W. (2023). Machine Learning-Based Rainfall Prediction: Unveiling Insights and Forecasting for Improved Preparedness. IEEE Access, 11, 132196–132222. https://doi.org/10.1109/ACCESS.2023.3333876

Hill, A. J., & Schumacher, R. S. (2021). Forecasting Excessive Rainfall with Random Forests and a Deterministic Convection-Allowing Model. Weather and Forecasting, 36(5), 1693–1711. https://doi.org/10.1175/WAF-D-21-0026.1

Ishida, K., Ercan, A., Nagasato, T., Kiyama, M., & Amagasaki, M. (2024). Use of one-dimensional CNN for input data size reduction in LSTM for improved computational efficiency and accuracy in hourly rainfall-runoff modeling. Journal of Environmental Management, 359, 120931. https://doi.org/https://doi.org/10.1016/j.jenvman.2024.120931.

Kagabo, J., Kattel, G. R., Kazora, J., Shangwe, C. N., & Habiyakare, F. (2024). Application of Machine Learning Algorithms in Predicting Extreme Rainfall Events in Rwanda. Atmosphere, 15(6), 1-22. https://doi.org/10.3390/atmos15060691

Khan, M. M. H., Mustafa, M. R. U., Hossain, M. S., Shams, S., & Julius, A. D. (2023). Short-Term and Long-Term Rainfall Forecasting Using ARIMA Model. International Journal of Environmental Science and Development, 14(5), 292–298. https://doi.org/10.18178/ijesd.2023.14.5.1447

Kumar, V., Kedam, N., Sharma, K. V., Khedher, K. M., & Alluqmani, A. E. (2023). A Comparison of Machine Learning Models for Predicting Rainfall in Urban Metropolitan Cities. Sustainability (Switzerland), 15(18), 13724. https://doi.org/10.3390/su151813724

Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., Coxon, G., & Dadson, S. J. (2021). Benchmarking data-driven rainfall-runoff models in Great Britain: A comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydrology and Earth System Sciences, 25(10), 5517–5534. https://doi.org/10.5194/hess-25-5517-2021

Mokhtar, A., Jalali, M., He, H., Al-Ansari, N., Elbeltagi, A., Alsafadi, K., Abdo, H. G., Sammen, S. S., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2021). Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms. IEEE Access, 9, 65503–65523. https://doi.org/10.1109/ACCESS.2021.3074305

Prodhan, F. A., Zhang, J., Hasan, S. S., Pangali Sharma, T. P., & Mohana, H. P. (2022). A review of machine learning methods for drought hazard monitoring and forecasting: Current research trends, challenges, and future research directions. Environmental Modelling & Software, 149, 105327. https://doi.org/10.1016/j.envsoft.2022.105327

Shen, W., Chen, S., Xu, J., Zhang, Y., Liang, X., & Zhang, Y. (2024). Enhancing Extreme Precipitation Forecasts through Machine Learning Quality Control of Precipitable Water Data from Satellite FengYun-2E: A Comparative Study of Minimum Covariance Determinant and Isolation Forest Methods. Remote Sensing, 16(16), 3104-3136. https://doi.org/10.3390/rs16163104

Xu, Y., Hu, C., Wu, Q., Jian, S., Li, Z., Chen, Y., Zhang, G., Zhang, Z., & Wang, S. (2022). Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation. Journal of Hydrology, 608, 127553. https://doi.org/10.1016/j.jhydrol.2022.127553

Zhao, W., Zhang, Z., Khodadadi, N., & Wang, L. (2025). A deep learning model coupled with metaheuristic optimization for urban rainfall prediction. Journal of Hydrology, 651(132596). 1-23 https://doi.org/10.1016/j.jhydrol.2024.132596




DOI: https://doi.org/10.31764/jtam.v9i4.32556

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Romi Aprianto, Armansyah Putra, Hayatun Nufus

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: