Interpolation of Fire Radiative Power in West Kalimantan using Ordinary Kriging

Gita Fitriyana, Nurfitri Imro'ah, Nur'ainul Miftahul Huda, Zuleha Zuleha

Abstract


Forest fires are recurring environmental disasters with severe ecological and economic impacts, particularly in regions like West Kalimantan. One of the key indicators used to measure fire intensity is Fire Radiative Power (FRP). Accurate spatial prediction of FRP is essential to support early warning systems and mitigation strategies. This study is a quantitative descriptive research that applies a geostatistical spatial analysis technique, namely Ordinary Kriging interpolation, to predict FRP values in West Kalimantan for July, August, and September 2024. The data were obtained from satellite imagery (VIIRS NOAA-20), including latitude, longitude, and FRP values. Prior to modeling, data were tested for normality and found to follow a normal distribution. The spherical semivariogram model yielded the best fit for July and August with RMSE values of 0.046 and 0.011, respectively, while the Gaussian model was optimal for September (RMSE = 0.007). The results show spatial variation in FRP distribution across different regencies each month, with the highest estimated FRP values recorded in Kapuas Hulu (July: 63.56), Melawi (August: 69.00), and Ketapang (September: 55.27). Most areas demonstrated low fire intensity, as shown by the dominance of green zones on the prediction maps. However, localized red-yellow zones indicate areas with high fire potential, which shifted monthly. This study contributes by demonstrating the application of Ordinary Kriging in forest fire intensity mapping and highlights the importance of choosing an appropriate semivariogram model to enhance predictive accuracy. The resulting FRP prediction maps can serve as a valuable tool for policy planning and targeted fire prevention efforts.


Keywords


Fire Radiative Power; Kriging; Semivariogram; Forest Fire.

Full Text:

DOWNLOAD [PDF]

References


Alkhatib, R., Sahwan, W., Alkhatieb, A., & Schütt, B. (2023). A Brief Review of Machine Learning Algorithms in Forest Fires Science. In Applied Sciences (Vol. 13, Issue 14, pp. 1–15). https://doi.org/10.3390/app13148275

Bäing, A. S. (2023). Spatial Analysis BT - Encyclopedia of Quality of Life and Well-Being Research (F. Maggino (ed.); pp. 6774–6776). Springer International Publishing. https://doi.org/10.1007/978-3-031-17299-1_2818

Böhner, J., & Bechtel, B. (2018). 2.10 - GIS in Climatology and Meteorology (B. B. T.-C. G. I. S. Huang (ed.); pp. 196–235). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09633-0

Borrelli, P., Armenteras, D., Panagos, P., Modugno, S., & Schütt, B. (2015). The Implications of Fire Management in the Andean Paramo: A Preliminary Assessment Using Satellite Remote Sensing. In Remote Sensing (Vol. 7, Issue 9, pp. 11061–11082). https://doi.org/10.3390/rs70911061

Chen, Q., Liu, G., Ma, X., & Que, X. (2020). Spatial Analysis BT - Encyclopedia of Mathematical Geosciences (B. S. Daya Sagar, Q. Cheng, J. McKinley, & F. Agterberg (eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-030-26050-7_300-1

Chung, S. Y., Venkatramanan, S., Elzain, H. E., Selvam, S., & Prasanna, M. V. (2019). Supplement of Missing Data in Groundwater-Level Variations of Peak Type Using Geostatistical Methods (Chapter 4, pp. 33–41). In S. Venkatramanan, M. V. Prasanna, & S. Y. Chung (Eds.), GIS and geostatistical techniques for groundwater science. Elsevier. https://doi.org/10.1016/B978-0-12-815413-7.00004-3

Devkota, J. U. (2021). Statistical Analysis of Active Fire Remote Sensing Data: Examples From South Asia. Environmental Monitoring and Assessment, 193(9), 608. https://doi.org/10.1007/s10661-021-09354-x

Dong, Z., Zheng, C., Zhao, F., Wang, G., Tian, Y., & Li, H. (2024). A Deep Learning Framework: Predicting Fire Radiative Power From the Combination of Polar-Orbiting and Geostationary Satellite Data During Wildfire Spread. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 10827–10841. https://doi.org/10.1109/JSTARS.2024.3403146

Emmanuel, O. R., Y., S. A., & B., O. M. (2020). Assessment of Ordinary Kriging and Inverse Distance Weighting Methods for Modeling Chromium and Cadmium Soil Pollution in E-Waste Sites in Douala, Cameroon. Journal of Health and Pollution, 10(26), 200605. https://doi.org/10.5696/2156-9614-10.26.200605

Filizzola, C., Falconieri, A., Lacava, T., Marchese, F., Masiello, G., Mazzeo, G., Pergola, N., Pietrapertosa, C., Serio, C., & Tramutoli, V. (2023). Fire Characterization by Using an Original RST-Based Approach for Fire Radiative Power (FRP) Computation. Fire, 6(2), 1–18. https://doi.org/10.3390/fire6020048

Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. Science of The Total Environment, 739, 140033. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140033

Freulon, X., & Desassis, N. (2023). Kriging BT - Encyclopedia of Mathematical Geosciences (B. S. Daya Sagar, Q. Cheng, J. McKinley, & F. Agterberg (eds.); pp. 705–713). Springer International Publishing. https://doi.org/10.1007/978-3-030-85040-1_18

Guo, Y., & Li, J. S.-H. (2024). Kriging Methods for Modeling Spatial Basis Risk in Weather Index Insurances: A Technical Note. International Journal of Theoretical and Applied Finance, 27(01), 2350034. https://doi.org/10.1142/S0219024923500346

Hilal, A., Bangroo, S. A., Kirmani, N. A., Wani, J. A., Biswas, A., Bhat, M. I., Farooq, K., Bashir, O., & Shah, T. I. (2024). Chapter 19 - Geostatistical Modeling a Tool for Predictive Soil Mapping. In S. Lamine, P. K. Srivastava, A. Kayad, F. Muñoz-Arriola, & P. C. B. T.-R. S. in P. A. Pandey (Eds.), Earth Observation (pp. 389–418). Academic Press. https://doi.org/10.1016/B978-0-323-91068-2.00011-4

Huda, N. M., & Imro’ah, N. (2024). Modeling the Dynamics of Forest Fires : A Vector Autoregressive Approach Across Three Fire Classifications. Jurnal Teori Dan Aplikasi Matematika, 8(4), 1157–1168. https://doi.org/10.31764/jtam.v8i4.24792

Huda, N. M., Imro’ah, N., Ayyash, M. Y., & Pratiwi, H. (2025). Forest Fires in Peatlands Analyzed from Various Perspectives : Spatial , Temporal , and Spatial-Temporal. Jurnal Teori Dan Aplikasi Matematika, 9(2), 482–496. https://doi.org/10.31764/jtam.v9i2.28884

Id, Y. L., Baorong, Z., Xiaohong, X., & Zijun, L. (2022). Application of a Semivariogram Based on a Deep Neural Network to Ordinary Kriging Interpolation of Elevation Data. PLOS ONE, 17(4), 1–12. https://doi.org/10.1371/journal.pone.0266942

Klauberg, C., Hudak, A., Bright, B., Boschetti, L., Dickinson, M., Kremens, R., & Silva, C. (2018). Use of Ordinary Kriging and Gaussian Conditional Simulation to Interpolate Airborne Fire Radiative Energy Density Estimates. Supplementary Material: International Journal of Wildland Fire, 27(4), 228–240. 10.1071/WF17113

Kumar, P., Rao, B., Burman, A., Kumar, S., & Samui, P. (2023). Spatial Variation of Permeability and Consolidation Behaviors of Soil Using Ordinary Kriging Method. Groundwater for Sustainable Development, 20, 100856. https://doi.org/https://doi.org/10.1016/j.gsd.2022.100856

Kumar, S. S., Hult, J., Picotte, J., & Peterson, B. (2020). Potential Underestimation of Satellite Fire Radiative Power Retrievals over Gas Flares and Wildland Fires. In Remote Sensing (Vol. 12, Issue 2, pp. 1–9). https://doi.org/10.3390/rs12020238

Li, M., Shen, S., Barzegar, V., Sadoughi, M., Hu, C., & Laflamme, S. (2021). Kriging-Based Reliability Analysis Considering Predictive Uncertainty Reduction. Structural and Multidisciplinary Optimization, 63(6), 2721–2737. https://doi.org/10.1007/s00158-020-02831-w

Meliyana R., S. M., & Ahmar, A. S. (2023). Analysis of the Distribution of Diarrhea Patients in Bogor Regency Month Using the Ordinary Kriging Method. ARRUS Journal of Social Sciences and Humanities, 3(2), 156–162. https://doi.org/10.35877/soshum1727

NASA. (2024). FIRMS Active Fire Data Download. https://firms.modaps.eosdis.nasa.gov/download/create.php

Oliver, M. D., & Webster, R. (2015). Basic Steps in Geostatistics: The Variogram and Kriging. SpringerBriefs in Agriculture. https://link.springer.com/book/10.1007/978-3-319-15865-5

Pham, T. G., Kappas, M., Huynh, C. Van, & Nguyen, L. H. K. (2019). Application of Ordinary Kriging and Regression Kriging Method for Soil Properties Mapping in Hilly Region of Central Vietnam. ISPRS International Journal of Geo-Information, 8(3), 147. https://doi.org/10.3390/ijgi8030147%0A

Pratiwi, H., Imro’ah, N., & Huda, N. M. (2025). Forest Fire Analysis From Perspective of Spatial-Temporal Using GSTAR Model. Barekeng: Journal of Mathematics and Its Applications, 19(2), 1379–1392.

Pratiwi, H., Imro’ah, N., Huda, N. M., & Ayyash, M. Y. (2025). Comparison of Weight Matrix in Hotspot Modeling in West Kalimantan Using The GSTAR Method. Jurnal Matematika UNAND, 14(1), 31–45. https://doi.org/10.25077/jmua.14.1.31-45.2025

Setiyoko, A., Basaruddin, T., & Arymurthy, A. M. (2020). Minimax Approach for Semivariogram Fitting in Ordinary Kriging. IEEE Access, 8, 82054–82065. https://doi.org/10.1109/ACCESS.2020.2991428

Sukkuea, A., & Heednacram, A. (2022). Prediction on Spatial Elevation Using Improved Kriging Algorithms: An Application in Environmental Management. Expert Systems with Applications, 207, 117971. https://doi.org/10.1016/j.eswa.2022.117971

Supriya, Y., & Gadekallu, T. R. (2023). Particle Swarm-Based Federated Learning Approach for Early Detection of Forest Fires. In Sustainability (Vol. 15, Issue 2, pp. 1–19). https://doi.org/10.3390/su15020964

Thom, D., & Seidl, R. (2016). Natural Disturbance Impacts on Ecosystem Services and Biodiversity in Temperate and Boreal Forests. Biological Reviews, 91(3), 760–781. https://doi.org/10.1111/brv.12193

Wong, Andy H, & Kwon, Tae J. (2021). Development and Evaluation of Geostatistical Methods for Estimating Weather Related Collisions: A Large-Scale Case Study. Transportation Research Record, 2675(11), 828–840. https://doi.org/10.1177/03611981211020008

Wu, C. (2017). Interpolation: Kriging. In International Encyclopedia of Geography. https://doi.org/10.1002/9781118786352.wbieg0996

Xia, H., Zha, S., Huang, J., & Liu, J. (2020). Radio Environment Map Construction by Adaptive Ordinary Kriging Algorithm Based on Affinity Propagation Clustering. International Journal of Distributed Sensor Networks, 16(5), 1550147720922484. https://doi.org/10.1177/1550147720922484

Xu, Y., & Kennedy, E. (2015). An Introduction to Spatial Analysis in Social Science Research. The Quantitative Methods for Psychology, 11(1), 22–31. https://doi.org/10.20982/tqmp.11.1.p022




DOI: https://doi.org/10.31764/jtam.v9i4.32643

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Gita Fitriyana, Nurfitri Imro’ah, Nur’ainul Miftahul Huda, Zuleha

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: