An ST-DBSCAN Approach to Spatio-Temporal Clustering of Earthquake Events in West Java, Indonesia

Dwi Kartika Widyawati, Achmad Fauzan

Abstract


Earthquakes are among the most frequent and damaging natural disasters in Indonesia, particularly in West Java Province, where their unpredictable occurrence often causes casualties and severe infrastructure damage. This study aims to identify spatial and temporal patterns of earthquakes to support disaster risk mitigation efforts. A quantitative exploratory approach was applied using the Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN) method, which groups earthquake events based on their proximity in space and time while distinguishing random noise. The analysis utilized secondary earthquake data from the Meteorology, Climatology, and Geophysics Agency (BMKG) covering the period January 2022 to December 2023. The results revealed eight distinct clusters and several high-risk zones with strong internal similarity (silhouette coefficient = 0.721), indicating stable and stationary patterns over the observed period. These findings demonstrate that ST-DBSCAN is effective in detecting consistent earthquake-prone areas. More importantly, the study provides practical implications for disaster mitigation, including the development of targeted early warning systems, prioritization of high-risk areas such as Cianjur Regency, and more efficient allocation of resources to strengthen preparedness and community safety.


Keywords


Earthquakes; Clustering; Spatio-Temporal; ST-DBSCAN.

Full Text:

DOWNLOAD [PDF]

References


An, X., Wang, Z., Wang, D., Liu, S., Jin, C., Xu, X., & Cao, J. (2023). STRP-DBSCAN: A Parallel DBSCAN Algorithm Based on Spatial-Temporal Random Partitioning for Clustering Trajectory Data. Applied Sciences, 13(20), 11122. https://doi.org/10.3390/app132011122

Aslam, M. (2022). Design of a new Z-test for the uncertainty of Covid-19 events under Neutrosophic statistics. BMC Medical Research Methodology, 22(1), 99. https://doi.org/10.1186/s12874-022-01593-x

Aslam, M. (2024). Analysis of imprecise measurement data utilizing z-test for correlation. Journal of Big Data, 11(1), 4. https://doi.org/10.1186/s40537-023-00873-7

Belyadi, H., & Haghighat, A. (2021). Unsupervised machine learning: clustering algorithms. In Machine Learning Guide for Oil and Gas Using Python (pp. 125–168). Elsevier. https://doi.org/10.1016/B978-0-12-821929-4.00002-0

Berry, M. W., Mohamed, A., & Yap, B. W. (2020). Supervised and Unsupervised Learning for Data Science (M. W. Berry, A. Mohamed, & B. W. Yap, Eds.). Springer International Publishing. https://doi.org/10.1007/978-3-030-22475-2

Birant, D., & Kut, A. (2007). ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data & Knowledge Engineering, 60(1), 208–221. https://doi.org/10.1016/j.datak.2006.01.013

Chaudhary, M. T., & Piracha, A. (2021). Natural Disasters—Origins, Impacts, Management. Encyclopedia, 1(4), 1101–1131. https://doi.org/10.3390/encyclopedia1040084

Fahira, A. N., & Nooraeni, R. (2023). Optimasi Parameter ST-DBSCAN dengan KNN dan Algoritma Genetika Studi Kasus: Data Bencana Alam di Pulau Jawa 2021. Jurnal Komputasi, 11(1), 24–33. https://doi.org/10.23960/komputasi.v11i1.3175

Faraouk, K. El, Witriyono, H., Deslianti, D., & Veronika, N. D. M. (2023). ST-DBSCAN Algorithm Implementation At Riau Province Forest Fire Points (2015-2022). Jurnal Komputer, Informasi Dan Teknologi, 3(1). https://doi.org/10.53697/jkomitek.v3i1.1191

Gaonkar, & Sawant. (2013). AutoEpsDBSCAN : DBSCAN with Eps Automatic for Large Dataset. ICEISTCON, 2, 2319–2526.

Halder, R. K., Uddin, M. N., Uddin, Md. A., Aryal, S., & Khraisat, A. (2024). Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications. Journal of Big Data, 11(1), 113. https://doi.org/10.1186/s40537-024-00973-y

Han, J., Kamber, M., & Pei, J. (2012). Cluster Analysis. In Data Mining (pp. 443–495). Elsevier. https://doi.org/10.1016/B978-0-12-381479-1.00010-1

Ikotun, A. M., Habyarimana, F., & Ezugwu, A. E. (2025). Cluster validity indices for automatic clustering: A comprehensive review. Heliyon, 11(2), e41953. https://doi.org/10.1016/j.heliyon.2025.e41953

Indrawan, & Adrianto. (2016). Spatio-Temporal Clustering Hotspot di Sumatera Selatan Tahun 2002-2003 Menggunakan Algoritme ST-DBSCAN dan Bahasa Pemrograman R. Jurnal Ilmu Komputer Dan Agri-Informatika, 3(2), 112. https://doi.org/10.29244/jika.3.2.112-121

Irsyam, M., Cummins, P. R., Asrurifak, M., Faizal, L., Natawidjaja, D. H., Widiyantoro, S., Meilano, I., Triyoso, W., Rudiyanto, A., Hidayati, S., Ridwan, M., Hanifa, N. R., & Syahbana, A. J. (2020). Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra, 36(1_suppl), 112–136. https://doi.org/10.1177/8755293020951206

Iswari, L. (2022). Profiling the Spatial and Temporal Properties of Earthquake Occurrences Using ST-DBSCAN Algorithm. 2022 IEEE 7th International Conference on Information Technology and Digital Applications (ICITDA), 1–8. https://doi.org/10.1109/ICITDA55840.2022.9971295

Jales, Rahmawati, & Widiharih. (2021). Pengelompokan Titik Gempa di Pulau Sulawesi Menggunakan Algoritma ST-DBSCAN (Spatio Temporal-Density Based Spatial Clustering Application With Noise). 10, 554–561. https://doi.org/https://doi.org/10.14710/j.gauss.10.4.554-561

Jufriansah, A., Pramudya, Y., Khusnani, A., & Saputra, S. (2021). Analysis of Earthquake Activity in Indonesia by Clustering Method. Journal of Physics: Theories and Applications, 5(2), 92. https://doi.org/10.20961/jphystheor-appl.v5i2.59133

Murdiaty, M., Angela, A., & Sylvia, C. (2020). Pengelompokkan Data Bencana Alam Berdasarkan Wilayah, Waktu, Jumlah Korban dan Kerusakan Fasilitas Dengan Algoritma K-Means. Jurnal Media Informatika Budidarma, 4(3), 744. https://doi.org/10.30865/mib.v4i3.2213

Nicolis, O., Delgado, L., Peralta, B., Díaz, M., & Chiodi, M. (2024). Space-time clustering of seismic events in Chile using ST-DBSCAN-EV algorithm. Environmental and Ecological Statistics, 31(2), 509–536. https://doi.org/10.1007/s10651-023-00594-3

Papakostas, Ι. (2025). A Silhouette-Based Deep Clustering Method.

Philo, C., & Philo, P. (2022a). 2.15 or Not 2.15? An Historical‐Analytical Inquiry into the Nearest‐Neighbor Statistic. Geographical Analysis, 54(2), 333–356. https://doi.org/10.1111/gean.12284

Philo, C., & Philo, P. (2022b). 2.15 or Not 2.15? An Historical‐Analytical Inquiry into the Nearest‐Neighbor Statistic. Geographical Analysis, 54(2), 333–356. https://doi.org/10.1111/gean.12284

Poelitz C., & Andrienko N. (2010). Finding Arbitrary Shaped Cluster with Related Extents in Space and Time. IEEE VGTC Simposium on Visualization.

Prasad, A. S., & Francescutti, L. H. (2017). Natural Disasters. In International Encyclopedia of Public Health (pp. 215–222). Elsevier. https://doi.org/10.1016/B978-0-12-803678-5.00519-1

Putri, N. A., Utami, T. W., & Wasono, R. (2023). Spatial Temporal Density Based Spatial Clustering Applications With Noise (ST-DBSCAN) For Classification of Forest and Land Fire Points in Riau Province in 2021. Prosiding Seminar Nasional UNIMUS, 436–445.

Ridwan. (2023). 1.290 Kali Gempa Bumi Terjadi di Jabar Sepanjang Tahun 2022. Https://Www.Detik.Com/Jabar/Berita/d-6493847/1-290-Gempa-Bumi-Terjadi-Sepanjang-2022-Di-Jawa-Barat.

Sealey, K. S., & Logan, A. (2019). The Commonwealth of the Bahamas. In World Seas: an Environmental Evaluation (pp. 591–615). Elsevier. https://doi.org/10.1016/B978-0-12-805068-2.00030-9

Sharma, A., Vijay, R. K., & Nanda, S. J. (2023). Identification and spatio-temporal analysis of earthquake clusters using SOM–DBSCAN model. Neural Computing and Applications, 35(11), 8081–8108. https://doi.org/10.1007/s00521-022-08085-5

Soltisz, A. M., Craigmile, P. F., & Veeraraghavan, R. (2024). Spatial Pattern Analysis using Closest Events (SPACE)—A Nearest Neighbor Point Pattern Analysis Framework for Assessing Spatial Relationships from Digital Images. Microscopy and Microanalysis, 30(2), 306–317. https://doi.org/10.1093/mam/ozae022

Sonhaji, N. R. (2023). Clustering Titik Gempa di Pulau Jawa Menggunakan Algoritma St-Dbscan. Universitas Islam Negeri Maulana Malik Ibrahim.

Subasi, A. (2020). Clustering examples. In Practical Machine Learning for Data Analysis Using Python (pp. 465–511). Elsevier. https://doi.org/10.1016/B978-0-12-821379-7.00007-2

Supendi, P., Winder, T., Rawlinson, N., Bacon, C. A., Palgunadi, K. H., Simanjuntak, A., Kurniawan, A., Widiyantoro, S., Nugraha, A. D., Shiddiqi, H. A., Ardianto, Daryono, Adi, S. P., Karnawati, D., Priyobudi, Marliyani, G. I., Imran, I., & Jatnika, J. (2023). A conjugate fault revealed by the destructive Mw 5.6 (November 21, 2022) Cianjur earthquake, West Java, Indonesia. Journal of Asian Earth Sciences, 257, 105830. https://doi.org/10.1016/j.jseaes.2023.105830

Yang, Q., Liu, Y., Duan, Z., & Liu, X. (2025). An Accessibility Analysis of Emergency Shelters in Shenzhen Using the Gaussian-Based Two-Step Floating Catchment Area Method and Clustering. Sustainability (Switzerland), 17(12). https://doi.org/10.3390/su17125250

Zaccagnino, D., & Doglioni, C. (2022). Earth’s gradients as the engine of plate tectonics and earthquakes. La Rivista Del Nuovo Cimento, 45(12), 801–881. https://doi.org/10.1007/s40766-022-00038-x

Zhang, Z., Hu, Y., Lu, W., Cao, W., & Gao, X. (2023). Spatial accessibility analysis and location optimization of emergency shelters in Deyang. Geomatics, Natural Hazards and Risk, 14(1). https://doi.org/10.1080/19475705.2023.2213809

Zheng, S., & Zhao, J. (2018). States Identification of Complex Chemical Process Based on Unsupervised Learning (pp. 2239–2244). https://doi.org/10.1016/B978-0-444-64241-7.50368-2




DOI: https://doi.org/10.31764/jtam.v9i4.33079

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Dwi Kartika Widyawati, Achmad Fauzan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: