The Probability Model of Earthquake Frequency in the Enggano Segment using Poisson Mixture Models
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Boden, D. R. (2016). Geologic fundamentals of geothermal energy. CRC Press.
Daniell, J. E., Schaefer, A. M., & Wenzel, F. (2017). Losses associated with secondary effects in earthquakes. Frontiers in Built Environment, 3, 30. https://doi.org/10.3389/fbuil.2017.00030
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
Ding, J., Tarokh, V., & Yang, Y. (2017). Bridging AIC and BIC: A new criterion for autoregression. IEEE Transactions on Information Theory, 64(6), 4024–4043. https://doi.org/10.1109/TIT.2017.2785860
George, S., & Jose, A. (2020). Generalized Poisson hidden Markov model for overdispersed or underdispersed count data. Revista Colombiana de Estadística, 43(1), 71–82.
Greff, K., Van Steenkiste, S., & Schmidhuber, J. (2017). Neural expectation maximization. In Advances in neural information processing systems (Vol. 30).
Hafiez, H. A. (2015). Estimating the magnitude of completeness for assessing the quality of earthquake catalogue of the ENSN, Egypt. Arabian Journal of Geosciences, 8, 9315–9323. https://doi.org/10.1007/s12517-015-1887-5
Hassani, H., & Yeganegi, M. R. (2020). Selecting optimal lag order in Ljung–Box test. Physica A: Statistical Mechanics and Its Applications, 541, 123700. https://doi.org/10.1016/j.physa.2019.123700
Irsyam, M., Cummins, P. R., Asrurifak, M., Faizal, L., Natawidjaja, D. H., Widiyantoro, S., Meilano, I., Triyoso, W., Rudiyanto, A., Hidayati, S., Ridwan, M., Hanifa, N. R., & Syahbana, A. J. (2020). Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra, 36(1), 112–136. https://doi.org/10.1177/8755293020951206
Kuha, J. (2004). AIC and BIC: Comparisons of assumptions and performance. Sociological Methods & Research, 33(2), 188–229. https://doi.org/10.1177/0049124103262065
Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303. https://doi.org/10.1093/biomet/65.2.297
Mannering, F. L., Shankar, V., & Bhat, C. R. (2016). Unobserved heterogeneity and the statistical analysis of highway accident data. Analytic Methods in Accident Research, 11, 1–16. https://doi.org/10.1016/j.amar.2016.04.001
McLachlan, G. J., Lee, S. X., & Rathnayake, S. I. (2019). Finite mixture models. Annual Review of Statistics and Its Application, 6, 355–378. https://doi.org/10.1146/annurev-statistics-031017-100325
Orfanogiannaki, K., Karlis, D., & Papadopoulos, G. A. (2014). Identification of temporal patterns in the seismicity of Sumatra using Poisson hidden Markov models. Research in Geophysics, 4(1), 1–6. https://doi.org/10.4081/rg.2014.4969
Radziminovich, N. A., Miroshnichenko, A. I., & Zuev, F. L. (2019). Magnitude of completeness, b-value, and spatial correlation dimension of earthquakes in the South Baikal Basin, Baikal Rift System. Tectonophysics, 759, 44–57. https://doi.org/10.1016/j.tecto.2019.03.011
Reid, A. (2015). History and seismology in the Ring of Fire: Punctuating the Indonesian past. In Environment, trade and society in Southeast Asia (pp. 1–16). Brill. https://doi.org/10.1163/9789004288058_006
Rizal, J., Gunawan, A. Y., Indratno, S. W., & Meilano, I. (2018). Identifying dynamic changes in megathrust segmentation via Poisson mixture model. In Journal of Physics: Conference Series (Vol. 1097, No. 1, Article 012083). IOP Publishing. https://doi.org/10.1088/1742-6596/1097/1/012083
Rizal, J., Gunawan, A. Y., Indratno, S. W., & Meilano, I. (2021). The application of copula continuous extension technique for bivariate discrete data: A case study on dependence modeling of seismicity data. Mathematical Modelling of Engineering Problems, 8(5), 793–804. https://doi.org/10.18280/mmep.080516
Rizal, J., Gunawan, A. Y., Indratno, S. W., & Meilano, I. (2023). Seismic activity analysis of five major earthquake source segments in the Sumatra megathrust zone: Each segment and two adjacent segments points of view. Bulletin of the New Zealand Society for Earthquake Engineering, 56(2), 55–70. https://doi.org/10.5459/bnzsee.1555
Sebastian, T., Jeyaseelan, V., Jeyaseelan, L., Anandan, S., George, S., & Bangdiwala, S. I. (2019). Decoding and modelling of time series count data using Poisson hidden Markov model and Markov ordinal logistic regression models. Statistical Methods in Medical Research, 28(5), 1552–1563. https://doi.org/10.1177/0962280218761154
Wang, J., Zhao, J., Lei, X., & Wang, H. (2018). New approach for point pollution source identification in rivers based on the backward probability method. Environmental Pollution, 241, 759–774. https://doi.org/10.1016/j.envpol.2018.06.017
Williams, Q. (2018). The thermal conductivity of Earth’s core: A key geophysical parameter’s constraints and uncertainties. Annual Review of Earth and Planetary Sciences, 46, 47–66. https://doi.org/10.1146/annurev-earth-082517-010208
Yip, C. F., Ng, W. L., & Yau, C. Y. (2017). A hidden Markov model for earthquake prediction. Stochastic Environmental Research and Risk Assessment, 1–20. https://doi.org/10.1007/s00477-017-1443-1
Zucchini, W., MacDonald, I. L., & Langrock, R. (2017). Hidden Markov models for time series: An introduction using R. Chapman and Hall/CRC. https://doi.org/10.1201/b20790
DOI: https://doi.org/10.31764/jtam.v10i1.33446
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Siska Yosmar, Ramya Rachmawati, Septri Damayanti, Jose Rizal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office:


















2.jpg)
