A Daily Transition Analysis of Disaster Events in Riau Islands using Markov Chains: Dominant Disaster Identification and Risk Assessment

Nahrul Hayati, Andini Setyo Anggraeni, Eko Sulistyono

Abstract


Objectives: This study employs a Markov Chain approach to analyze daily disaster transition patterns in the Riau Islands, with the primary objectives of identifying dominant hazards, quantifying long-term disaster risks, and providing evidence-based recommendations for disaster management. Methods: The research utilized daily disaster records from Indonesia’s National Disaster Management Agency (BNPB) for 2024. A dominant state classification approach was applied to handle days with multiple disaster occurrences, followed by the construction of a transition probability matrix and steady-state analysis to determine long-term disaster distribution. Results: The analysis reveals that no disaster conditions represent the most prevalent state in the region. Among actual disasters, wildfires demonstrate the highest persistence, followed by extreme weather events, floods, and landslides. The transition patterns indicate that most disasters occur as isolated events rather than consecutive sequences, though wildfires show a tendency for temporal clustering. Conclusion: The study provides two key contributions. Methodologically, it demonstrates an effective approach for simplifying complex multi disaster daily data. Practically, it offers scientific evidence for prioritizing wildfire management in the Riau Islands while maintaining preparedness for other episodic disasters. These findings support the development of targeted early warning systems and resource allocation strategies for local disaster management agencies.

Keywords


Daily Transition; Disaster; Markov Chain; Riau Islands.

Full Text:

DOWNLOAD [PDF]

References


Ahmad, H., Abdul Maulud, K. N., A. Karim, O., & Mohd, F. A. (2021). Assessment of erosion and hazard in the coastal areas of Selangor. Malaysian Journal of Society and Space, 17(1), 14–31. https://doi.org/10.17576/GEO-2021-1701-02

Amores, A., Marcos, M., Pedreros, R., Le Cozannet, G., Lecacheux, S., Rohmer, J., Hinkel, J., Gussmann, G., van der Pol, T., Shareef, A., & Khaleel, Z. (2021). Coastal Flooding in the Maldives Induced by Mean Sea-Level Rise and Wind-Waves: From Global to Local Coastal Modelling. Frontiers in Marine Science, 8(1), 1–18. https://doi.org/10.3389/FMARS.2021.665672

Atje, R. (2021). Batam’s Special Economic Status: A Mixed Blessing? In The SIJORI Series: The Riau Island Setting Sail (pp. 103–113). ISEAS Yusof Ishak Institute. https://books.google.co.id/books?hl=en&lr=&id=Ic1EEAAAQBAJ&oi=fnd&pg=PA103&dq=Batam%27s+Special+Economic+Status:+A+Mixed+Blessing%3F&ots=gVTf4CPwnc&sig=Q4wUMR47mimZqDNaY9ushbyM7Ns&redir_esc=y#v=onepage&q=Batam’s%20Special%20Economic%20Status%3A%20A%20Mixed%20Blessing%3F&f=false

Badan Nasional Penanggulangan Bencana. (2025, June 23). Data Informasi Bencana Indonesia. https://dibi.bnpb.go.id

Bagwan, W. (2025). Markov Chain-based Hydrological Drought Assessment for Maharashtra State (2012–2023) and District-Level Drought Risk Forecasts Until 2035. Arabian Journal for Science and Engineering, 50(1), 15033–15051. https://doi.org/10.1007/s13369-024-09958-8

Bai, Y., Sun, S., Xu, Y., Zhao, Y., Pan, Y., Xiao, Y., & Li, R. (2025). Exploring the dynamic impact of future land use changes on urban flood disasters: A case study in Zhengzhou City, China. Geography and Sustainability, 6(4), 100287. https://doi.org/10.1016/J.GEOSUS.2025.100287

Dalimunthe, D. Y., Fahria, I., & Wahyuni, D. (2023). Markov chain analysis to predict natural disasters in the Province of Bangka Belitung Islands as part of preventative measures to prevent environmental damage. IOP Conference Series: Earth and Environmental Science, 1267(1), 1–6. https://doi.org/10.1088/1755-1315/1267/1/012010

Griffen, S., & Robinson, S. ann. (2023). (Un)just post-disaster mobilities in small island developing states: Revisiting the patterns and outcomes of three major environmental disasters in the Caribbean. International Journal of Disaster Risk Reduction, 97, 1–17. https://doi.org/10.1016/J.IJDRR.2023.104029

Harahap, R., Masselink, G., & Boulton, S. J. (2025). A coastal risk analysis for the outermost small islands of Indonesia: A multiple natural hazards approach. International Journal of Disaster Risk Reduction, 121(1), 105377. https://doi.org/10.1016/J.IJDRR.2025.105377

Hayati, N., Setiawaty, B., & Purnaba, I. (2023). The Application of Discrete Hidden Markov Model on Crosses of Diploid Plant. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(3), 1449–1462. https://doi.org/10.30598/barekengvol17iss3pp1449-1462

Hayati, N., Sulistyono, E., & Gusrita, R. (2025). Markov Chain Analysis of Bank Customer Migration: Implication for Financial Inclusion in Maritime Economies. 9(4), 1142–1152. https://doi.org/10.31764/jtam.v9i4.32121

Hernández-Delgado, E. A. (2024). Coastal Restoration Challenges and Strategies for Small Island Developing States in the Face of Sea Level Rise and Climate Change. Coasts, 4(2), 235–286. https://doi.org/10.3390/COASTS4020014

Hidayati, N., Pungkasanti, P. T., & Wakhidah, N. (2021). Prediksi Bencana Alam di Kota Semarang Menggunakan Algoritma Markov Chains. Jurnal Sains Dan Informatika, 7(1), 107–116. https://doi.org/10.34128/jsi.v7i1.283

Kamaruzzaman, M., Kabir, M., Rahman, A., Jahan, C., Mazumder, Q., & Rahman, M. (2018). Modeling of agricultural drought risk pattern using Markov chain and GIS in the western part of Bangladesh. Environment, Development and Sustainability, 20(1), 569–588. https://doi.org/10.1007/s10668-016-9898-0

Liu, H., Tatano, H., Kajitani, Y., & Yang, Y. (2022). Analysis of the influencing factors on industrial resilience to flood disasters using a semi-markov recovery model: A case study of the Heavy Rain Event of July 2018 in Japan. International Journal of Disaster Risk Reduction, 82(1), 103384. https://doi.org/10.1016/J.IJDRR.2022.103384

Low Carbon Development Indonesia. (2022, August 29). Loss and Damage Akibat Dampak Perubahan Iklim di Sektor Pesisir. Kementerian PPN/Bappenas. https://lcdi-indonesia.id/2022/08/29/loss-and-damage-akibat-dampak-perubahan-iklim-di-sektor-pesisir/

Mehta, M., Shukla, T., Bhambri, R., Gupta, A. K., & Dobhal, D. P. (2017). Terrain changes, caused by the 15–17 June 2013 heavy rainfall in the Garhwal Himalaya, India: A case study of Alaknanda and Mandakini basins. Geomorphology, 284(1), 53–71. https://doi.org/10.1016/J.GEOMORPH.2016.11.001

Novianti, A., & Utari, D. T. (2021). Implementation of Markov Chain in Detecting Opportunities for Natural Disasters in Klaten (Case Study: Number of Floods, Landslides, and Hurricanes 2019-2020). Enthusiastic International Journal of Statistics and Data Science, 1(2), 58–67. https://journal.uii.ac.id/ENTHUSIASTIC

Nurhidayah, L., Davies, P., Alam, S., Saintilan, N., & Triyanti, A. (2022). Responding to sea level rise: challenges and opportunities to govern coastal adaptation strategies in Indonesia. Maritime Studies, 21(3), 339–352. https://doi.org/10.1007/s40152-022-00274-1

Odhiambo, J., Weke, P. G. O., Ngare, P., Odhiambo, J., & Weke, P. (2020). Modeling Kenyan Economic Impact of Corona Virus in Kenya Using Discrete-Time Markov Chains. Journal of Finance and Economics, 8(2), 80–85. https://doi.org/10.12691/jfe-8-2-5

Rubinato, M., Heyworth, J., & Hart, J. (2020). Protecting coastlines from flooding in a changing climate: A preliminary experimental study to investigate a sustainable approach. Water (Switzerland), 12(9), 2471. https://doi.org/10.3390/W12092471

Seabrook, E., & Wiskott, L. (2023). A Tutorial on the Spectral Theory of Markov Chains. In Neural Computation (Vol. 35, Issue 11, pp. 1713–1796). MIT Press Journals. https://doi.org/10.1162/neco_a_01611

Setiawati, M. D., Nandika, M. R., Supriyadi, I. H., Iswari, M. Y., Prayudha, B., Wouthuyzen, S., Adi, N. S., Djamil, Y. S., Hanifa, N. R., Chatterjee, U., Muslim, A. M., & Eguchi, T. (2023). Climate change and anthropogenic pressure on Bintan Islands, Indonesia: An assessment of the policies proposed by local authorities. Regional Studies in Marine Science, 66(1), 103123. https://doi.org/10.1016/J.RSMA.2023.103123

Situ, Z., Zhong, Q., Zhang, J., Teng, S., Ge, X., Zhou, Q., & Zhao, Z. (2025). Attention-based deep learning framework for urban flood damage and risk assessment with improved flood prediction and land use segmentation. International Journal of Disaster Risk Reduction, 116(1), 105165. https://doi.org/10.1016/J.IJDRR.2024.105165

Sun, T., Liu, D., Liu, D., Zhang, L., Li, M., Khan, M. I., Li, T., & Cui, S. (2023). A new method for flood disaster resilience evaluation: A hidden Markov model based on Bayesian belief network optimization. Journal of Cleaner Production, 412(1), 137372. https://doi.org/10.1016/J.JCLEPRO.2023.137372

Undang-Undang Republik Indonesia Nomor 27 Tahun 2007. (2007). https://peraturan.bpk.go.id/Details/39911/uu-no-27-tahun-2007

United Nations Office for Disaster Risk Reduction. (2025). What is the Sendai Framework for Disaster Risk Reduction? United Nations Office for Disaster Risk Reduction. https://www.undrr.org/implementing-sendai-framework/what-sendai-framework#priorities

Wulandari, S. N., Raihan, A. U., & Sasnita, S. D. (2023). The Strategy of The Riau Islands Province in Facing Challenges as a State Border Area. Proceedings of the International Conference Social-Humanities in Maritime and Border Area (SHIMBA) (pp. 110–114).. https://doi.org/10.2991/978-2-38476-150-0_22




DOI: https://doi.org/10.31764/jtam.v10i1.34024

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Nahrul Hayati, Andini Setyo Anggraeni, Eko Sulistyono

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: