Dimensionality Reduction Evaluation of Multivariate Time Series of Consumer Price Index in Indonesia
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Agresti, A., Franklin, C. A., & Klingenberg, B. (2023). Statistics: The Art and Science of Learning from Data (5th ed.). Pearson Education Limited. https://www.pearson.com/en-gb/subject-catalog/p/statistics-the-art-and-science-of-learning-from-data-global-edition/P200000008773/9781292444796
Alshammri, F., & Pan, J. (2021). Moving dynamic principal component analysis for non-stationary multivariate time series. Computational Statistics, 36(3), 2247–2287. https://doi.org/10.1007/s00180-021-01081-8
Bank Indonesia. (2025). Tabel Harga Pedagang Besar Berdasarkan Daerah. Pusat Informasi Harga Pangan Strategis (PIHPS) Nasional. https://www.bi.go.id/hargapangan/TabelHarga/PedagangBesarDaerah
Cotta, H. H. A. (2014). Análise de componentes principais robusta em dados de poluição do ar: aplicação à otimização de uma rede de monitoramento [Master’s thesis, Universidade Federal do Espírito Santo]. https://dspace5.ufes.br/items/72c34454-d695-48f9-9eec-3297f7c6a0d5
Cotta, H. H. A. (2019). Robust Methods in Multivariate Time Series [Doctoral Thesis, Universidade Federal do Espírito Santo]. https://sappg.ufes.br/tese_drupal/tese_14040_UFESFINALTheseHigor0809%20%282%29.pdf
Cotta, H. H. A., Reisen, V. A., Bondon, P., & Filho, P. R. P. (2020). Identification of Redundant Air Quality Monitoring Stations using Robust Principal Component Analysis. Environmental Modeling and Assessment, 25(4), 521–530. https://doi.org/10.1007/s10666-020-09717-7
Cotta, H. H. A., Reisen, V. A., Bondon, P., & Stummer, W. (2017). Robust estimation of covariance and correlation functions of a stationary multivariate process. International Work-Conference on Time Series, 47–58. https://centralesupelec.hal.science/hal-01578459
Gao, X., & Fang, Y. (2016). Penalized Weighted Least Squares for Outlier Detection and Robust Regression. http://arxiv.org/abs/1603.07427
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts. https://otexts.com/fpp2/
Liemohn, M. W., Shane, A. D., Azari, A. R., Petersen, A. K., Swiger, B. M., & Mukhopadhyay, A. (2021). RMSE is not enough: Guidelines to robust data-model comparisons for magnetospheric physics. Journal of Atmospheric and Solar-Terrestrial Physics, 218, 105624. https://doi.org/10.1016/j.jastp.2021.105624
Little, R. J. A., & Rubin, D. B. (2002). Statistical Analysis with Missing Data (2nd ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119013563
Lotfipoor, A., Patidar, S., & Jenkins, D. P. (2023). Transformer network for data imputation in electricity demand data. Energy and Buildings, 300, 113675. https://doi.org/10.1016/j.enbuild.2023.113675
Molinaro, A., & DeFalco, F. (2022). Empirical assessment of alternative methods for identifying seasonality in observational healthcare data. BMC Medical Research Methodology, 22(1), 182. https://doi.org/10.1186/s12874-022-01652-3
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis (5th ed.). John Wiley & Sons. https://books.google.co.id/books?id=0yR4KUL4VDkC
Moritz, S., & Bartz-Beielstein, T. (2017). imputeTS: Time Series Missing Value Imputation in R. The R Journal, 9(1), 207–218. https://doi.org/10.32614/RJ-2017-009
Reisen, V. A., Lévy-Leduc, C., Monte, E. Z., & Bondon, P. (2024). A dimension reduction factor approach for multivariate time series with long-memory: a robust alternative method. Statistical Papers, 65(5), 2865–2886. https://doi.org/10.1007/s00362-023-01504-2
Reisen, V. A., Monte, E. Z., da Conceição Franco, G., Sgrancio, A. M., Molinares, F. A. F., Bondon, P., Ziegelmann, F. A., & Abraham, B. (2018). Robust estimation of fractional seasonal processes: Modeling and forecasting daily average SO2 concentrations. Mathematics and Computers in Simulation, 146, 27–43. https://doi.org/10.1016/j.matcom.2017.10.004
Stekhoven, D. J., & Bühlmann, P. (2012). Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118. https://doi.org/10.1093/bioinformatics/btr597
Sumertajaya, I. M., Rohaeti, E., Wigena, A. H., & Sadik, K. (2023). Vector Autoregressive-Moving Average Imputation Algorithm for Handling Missing Data in Multivariate Time Series. IAENG International Journal of Computer Science, 50(2), 727–735. https://www.iaeng.org/IJCS/issues_v50/issue_2/IJCS_50_2_42.pdf
Sundararajan, R. R. (2021). Principal component analysis using frequency components of multivariate time series. Computational Statistics and Data Analysis, 157, 107164. https://doi.org/10.1016/j.csda.2020.107164
Wei, W. W. S. (2019). Principal Component Analysis of Multivariate Time Series. In Multivariate Time Series Analysis and Applications (1st ed., pp. 139–161). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119502951.ch4
Zamprogno, B., Reisen, V. A., Bondon, P., Aranda Cotta, H. H., & Reis Jr, N. C. (2020). Principal component analysis with autocorrelated data. Journal of Statistical Computation and Simulation, 90(12), 2117–2135. https://doi.org/10.1080/00949655.2020.1764556
Zhao, X., & Shang, P. (2016). Principal component analysis for non-stationary time series based on detrended cross-correlation analysis. Nonlinear Dynamics, 84(2), 1033–1044. https://doi.org/10.1007/s11071-015-2547-6
DOI: https://doi.org/10.31764/jtam.v10i1.34151
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Nina Valentika, I Made Sumertajaya, Aji Hamim Wigena, Farit Mochamad Afendi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office:


















2.jpg)
