Dimensionality Reduction Evaluation of Multivariate Time Series of Consumer Price Index in Indonesia

Nina Valentika, I Made Sumertajaya, Aji Hamim Wigena, Farit Mochamad Afendi

Abstract


Multivariate time series (MTS) analysis of the Consumer Price Index (CPI) in Indonesia often encounters challenges such as outliers, missing data, and inter-variable correlations. Principal Component Analysis (PCA) is a practical approach for dimensionality reduction; however, its performance may vary depending on the data characteristics. This study is a quantitative comparative study that integrates empirical analysis and Monte Carlo simulation based on a first-order Vector Autoregressive (VAR(1)) model to evaluate three PCA approaches: Classical PCA, Robust PCA (RPCA), and PCA of MTS. These methods were applied to weekly price data of eight strategic food commodities across 70 districts and cities in Indonesia. The evaluation employed three criteria: (1) dimensionality reduction efficiency (empirical and simulation), (2) reconstruction accuracy measured using Root Mean Square Error (RMSE) (empirical), and (3) robustness to outliers and inter-variable correlations (simulation). Empirical results indicate that Classical PCA (lag 1) and RPCA (lag 1) are both efficient and effective in reducing dimensionality with minimal information loss. Using the first three principal components, all three methods were able to explain at least 85% of the total variance, with lag 1 identified as optimal. Simulation results reveal that RPCA (lag 1) provides the most stable and consistent performance in the presence of outliers, while Classical PCA (lag 2) performs better under conditions of high inter-variable correlation and a low proportion of outliers. These findings suggest that robust covariance estimation can improve the accuracy of dimensionality reduction and enhance the stability of multivariate time-series analysis for food price data in Indonesia.

Keywords


Principal Component Analysis; Robust Principal Component Analysis; Multivariate Time Series; Dimensionality Reduction; Consumer Price Index.

Full Text:

DOWNLOAD [PDF]

References


Agresti, A., Franklin, C. A., & Klingenberg, B. (2023). Statistics: The Art and Science of Learning from Data (5th ed.). Pearson Education Limited. https://www.pearson.com/en-gb/subject-catalog/p/statistics-the-art-and-science-of-learning-from-data-global-edition/P200000008773/9781292444796

Alshammri, F., & Pan, J. (2021). Moving dynamic principal component analysis for non-stationary multivariate time series. Computational Statistics, 36(3), 2247–2287. https://doi.org/10.1007/s00180-021-01081-8

Bank Indonesia. (2025). Tabel Harga Pedagang Besar Berdasarkan Daerah. Pusat Informasi Harga Pangan Strategis (PIHPS) Nasional. https://www.bi.go.id/hargapangan/TabelHarga/PedagangBesarDaerah

Cotta, H. H. A. (2014). Análise de componentes principais robusta em dados de poluição do ar: aplicação à otimização de uma rede de monitoramento [Master’s thesis, Universidade Federal do Espírito Santo]. https://dspace5.ufes.br/items/72c34454-d695-48f9-9eec-3297f7c6a0d5

Cotta, H. H. A. (2019). Robust Methods in Multivariate Time Series [Doctoral Thesis, Universidade Federal do Espírito Santo]. https://sappg.ufes.br/tese_drupal/tese_14040_UFESFINALTheseHigor0809%20%282%29.pdf

Cotta, H. H. A., Reisen, V. A., Bondon, P., & Filho, P. R. P. (2020). Identification of Redundant Air Quality Monitoring Stations using Robust Principal Component Analysis. Environmental Modeling and Assessment, 25(4), 521–530. https://doi.org/10.1007/s10666-020-09717-7

Cotta, H. H. A., Reisen, V. A., Bondon, P., & Stummer, W. (2017). Robust estimation of covariance and correlation functions of a stationary multivariate process. International Work-Conference on Time Series, 47–58. https://centralesupelec.hal.science/hal-01578459

Gao, X., & Fang, Y. (2016). Penalized Weighted Least Squares for Outlier Detection and Robust Regression. http://arxiv.org/abs/1603.07427

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts. https://otexts.com/fpp2/

Liemohn, M. W., Shane, A. D., Azari, A. R., Petersen, A. K., Swiger, B. M., & Mukhopadhyay, A. (2021). RMSE is not enough: Guidelines to robust data-model comparisons for magnetospheric physics. Journal of Atmospheric and Solar-Terrestrial Physics, 218, 105624. https://doi.org/10.1016/j.jastp.2021.105624

Little, R. J. A., & Rubin, D. B. (2002). Statistical Analysis with Missing Data (2nd ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119013563

Lotfipoor, A., Patidar, S., & Jenkins, D. P. (2023). Transformer network for data imputation in electricity demand data. Energy and Buildings, 300, 113675. https://doi.org/10.1016/j.enbuild.2023.113675

Molinaro, A., & DeFalco, F. (2022). Empirical assessment of alternative methods for identifying seasonality in observational healthcare data. BMC Medical Research Methodology, 22(1), 182. https://doi.org/10.1186/s12874-022-01652-3

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis (5th ed.). John Wiley & Sons. https://books.google.co.id/books?id=0yR4KUL4VDkC

Moritz, S., & Bartz-Beielstein, T. (2017). imputeTS: Time Series Missing Value Imputation in R. The R Journal, 9(1), 207–218. https://doi.org/10.32614/RJ-2017-009

Reisen, V. A., Lévy-Leduc, C., Monte, E. Z., & Bondon, P. (2024). A dimension reduction factor approach for multivariate time series with long-memory: a robust alternative method. Statistical Papers, 65(5), 2865–2886. https://doi.org/10.1007/s00362-023-01504-2

Reisen, V. A., Monte, E. Z., da Conceição Franco, G., Sgrancio, A. M., Molinares, F. A. F., Bondon, P., Ziegelmann, F. A., & Abraham, B. (2018). Robust estimation of fractional seasonal processes: Modeling and forecasting daily average SO2 concentrations. Mathematics and Computers in Simulation, 146, 27–43. https://doi.org/10.1016/j.matcom.2017.10.004

Stekhoven, D. J., & Bühlmann, P. (2012). Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118. https://doi.org/10.1093/bioinformatics/btr597

Sumertajaya, I. M., Rohaeti, E., Wigena, A. H., & Sadik, K. (2023). Vector Autoregressive-Moving Average Imputation Algorithm for Handling Missing Data in Multivariate Time Series. IAENG International Journal of Computer Science, 50(2), 727–735. https://www.iaeng.org/IJCS/issues_v50/issue_2/IJCS_50_2_42.pdf

Sundararajan, R. R. (2021). Principal component analysis using frequency components of multivariate time series. Computational Statistics and Data Analysis, 157, 107164. https://doi.org/10.1016/j.csda.2020.107164

Wei, W. W. S. (2019). Principal Component Analysis of Multivariate Time Series. In Multivariate Time Series Analysis and Applications (1st ed., pp. 139–161). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119502951.ch4

Zamprogno, B., Reisen, V. A., Bondon, P., Aranda Cotta, H. H., & Reis Jr, N. C. (2020). Principal component analysis with autocorrelated data. Journal of Statistical Computation and Simulation, 90(12), 2117–2135. https://doi.org/10.1080/00949655.2020.1764556

Zhao, X., & Shang, P. (2016). Principal component analysis for non-stationary time series based on detrended cross-correlation analysis. Nonlinear Dynamics, 84(2), 1033–1044. https://doi.org/10.1007/s11071-015-2547-6




DOI: https://doi.org/10.31764/jtam.v10i1.34151

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Nina Valentika, I Made Sumertajaya, Aji Hamim Wigena, Farit Mochamad Afendi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: