Geostatistical Co-Kriging Approach for Estimating Total Coliform Bacteria in the Rivers of DKI Jakarta
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Abbasnejadfard, M., Bastami, M., & Fallah, A. (2021). Investigating the spatial correlations in univariate random fields of peak ground velocity and peak ground displacement considering anisotropy. Geoenvironmental Disasters, 8(1), 24. https://doi.org/10.1186/s40677-021-00196-w
Addis, H. K., Ayalew, B., Gebretsadik, M., Abera, A., Getu, L. A., & Addis, A. K. (2023). Cross-Correlation of Soil Moisture and Stone Content and Their Spatial Pattern Across the Different Slope Aspects and Soil Depth. Turkish Journal of Agriculture - Food Science and Technology, 11(4), 625–633. https://doi.org/10.24925/turjaf.v11i4.625-633.5279
Belkhiri, L., Tiri, A., & Mouni, L. (2020). Spatial distribution of the groundwater quality using kriging and Co-kriging interpolations. Groundwater for Sustainable Development, 11(August), 100473. https://doi.org/10.1016/j.gsd.2020.100473
Bogunovic, I., Filipovic, L., Filipovic, V., & Pereira, P. (2021). Spatial mapping of soil chemical properties using multivariate geostatistics. A study from cropland in eastern croatia. Journal of Central European Agriculture, 22(1), 201–210. https://doi.org/10.5513/JCEA01/22.1.3011
Bojarczuk, A., Jelonkiewicz, Ł., & Lenart-Boroń, A. (2018). The effect of anthropogenic and natural factors on the prevalence of physicochemical parameters of water and bacterial water quality indicators along the river Białka, southern Poland. Environmental Science and Pollution Research, 25(10), 10102-10114. https://link.springer.com/article/10.1007/s11356-018-1212-2
Conolly, J. (2020). Spatial Interpolation. Archaeological Spatial Analysis, 118–134. https://doi.org/10.4324/9781351243858-7
Dewana, B. R., Prasetyo, S. Y. J., & Hartomo, K. D. (2022). Comparison of IDW and Kriging Interpolation Methods Using Geoelectric Data to Determine the Depth of the Aquifer in Semarang, Indonesia. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 8(2), 215. https://doi.org/10.26555/jiteki.v8i2.23260
Ding, Q., Wang, Y., & Zhuang, D. (2018). Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. Journal of Environmental Management, 212, 23–31. https://doi.org/10.1016/j.jenvman.2018.01.074
Djembarmanah, R. S., & Salsabila, G. Analysis of the Water Quality of the River in West Java as the Raw Water for Drinking Water. Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 21(3), 802-811. https://doi.org/10.14710/presipitasi.v21i3.802-811
Dowd, P. A., & Pardo-igúzquiza, E. (2024). The Many Forms of Co-kriging : A Diversity of Multivariate Spatial Estimators. Mathematical Geosciences, 56(2), 387–413. https://doi.org/10.1007/s11004-023-10104-7
Lei, J. (2020). Cross-Validation With Confidence. Journal of the American Statistical Association, 115(532), 1978–1997. https://doi.org/10.1080/01621459.2019.1672556
Liu, Z., Van Niekerk, J., & Rue, H. (2025). Leave-group-out cross-validation for latent gaussian models. Sort, 49(1), 121–146. https://doi.org/10.57645/20.8080.02.25
Pamurda, A., Mahendra, D., Pratama, M. A., Moersidik, S. S., Rahmawati, S., & Iresha, F. M. (2023). Spatial dynamics of microplastic pollution in water and sediments of the Ciliwung river along with conditions of water Quality field parameters and population density. Journal of Ecological Engineering, 24(8). 296–309. http://dx.doi.org/10.12911/22998993/166311
Payares-garcia, D., Osei, F., Mateu, J., & Stein, A. (2023). A Poisson cokriging method for bivariate count data. Spatial Statistics, 57, 100769. https://doi.org/10.1016/j.spasta.2023.100769
Pham, T. G., Kappas, M., Huynh, C. Van, Hoang, L., & Nguyen, K. (2019). Application of ordinary kriging and regression kriging method for soil properties mapping in hilly region of central Vietnam. ISPRS International Journal of Geo-Information, 8(3), 147. https://doi.org/10.3390/ijgi8030147
Pratama, M. A., Immanuel, Y. D., & Marthanty, D. R. (2020). A multivariate and spatiotemporal analysis of water quality in Code River, Indonesia. The Scientific World Journal, 2020(1), 8897029.https://doi.org/10.1155/2020/8897029
Priyono, A., Rushayati, S. B., & Sujati, A. B. (2021). Water Quality Characteristic of Ciliwung River at Bogor Botanical Garden Segmen, Bogor. Media Konservasi, 22(2), 111-117. https://doi.org/10.11648/j.ijees.20210605.12
Rostami, A. A., Karimi, V., Khatibi, R., & Pradhan, B. (2020). An investigation into seasonal variations of groundwater nitrate by spatial modelling strategies at two levels by kriging and co-kriging models. Journal of Environmental Management, 270(June). https://doi.org/10.1016/j.jenvman.2020.110843
Rusdiyanto, E., Sitorus, S. R., Noorachmat, B. P., & Sobandi, R. (2021). Assessment of the actual status of the Cikapundung river Waters in the Densely-Inhabited Slum area, Bandung City. Journal of Ecological Engineering, 22(11), 198-208. https://doi.org/10.12911/22998993/142916
Schiappapietra, E., Stripajová, S., Pažák, P., Douglas, J., & Trendafiloski, G. (2022). Exploring the impact of spatial correlations of earthquake ground motions in the catastrophe modelling process: a case study for Italy. Bulletin of Earthquake Engineering, 20(11), 5747–5773. https://doi.org/10.1007/s10518-022-01413-z
Sharma, R., & Sood, K. (2022). Characterization of Spatial Variability of Soil Parameters in Apple Orchards of Characterization of Spatial Variability of Soil Parameters in Apple Orchards of Himalayan Region Using Geostatistical Analysis. Communications in Soil Science and Plant Analysis, 51(8), 1065–1077. https://doi.org/10.1080/00103624.2020.1744637
Sikder, A., & Züfle, A. (2020). Augmenting geostatistics with matrix factorization: a case study for house price estimation. ISPRS International Journal of Geo-Information, 9(5), 288. https://doi.org/10.3390/ijgi9050288
Singh, P., & Verma, P. (2019). A comparative study of spatial interpolation technique (IDW and Kriging) for determining groundwater quality. GIS and Geostatistical Techniques for Groundwater Science, 43–56. https://doi.org/10.1016/B978-0-12-815413-7.00005-5
Usowicz, B., Lipiec, J., Łukowski, M., & Słomiński, J. (2021). Improvement of spatial interpolation of precipitation distribution using cokriging incorporating rain‐gauge and satellite (SMOS) soil moisture data. Remote Sensing, 13(5). https://doi.org/10.3390/rs13051039
Xiao, M., Zhang, G., Breitkopf, P., Villon, P., & Zhang, W. (2018). Extended Co-Kriging interpolation method based on multi-fidelity data. Applied Mathematics and Computation, 323, 120–131. https://doi.org/10.1016/j.amc.2017.10.055
DOI: https://doi.org/10.31764/jtam.v10i1.34391
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Salwa Salsabila, Dwi Agustin Nuriani Sirodj

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office:


















2.jpg)
