The Severe Stunting Cases of Children in Central Java Province Explained by Negative Binomial Regression Model

Rhendy K. P. Widiyanto, Fatkhurokhman Fauzi, Achmad Fauzan, Anang Kurnia

Abstract


Severe stunting, or very short stature among children, remains a critical public health concern in Central Java Province. Robust statistical modelling is essential to identify the key factors associated with these cases and to guide targeted interventions. This study employs count regression models with an offset variable to analyze the factors influencing severe stunting cases across districts in Central Java. By using 2023 official data in districts level taken from the Ministry of Home Affairs and the Statistics Indonesia, we initially utilize a Poisson regression model in this study. However, due to evidence of overdispersion, a Negative Binomial regression model was adopted. Backward elimination was then applied to obtain the most parsimonious model. The Negative Binomial regression successfully addressed overdispersion. Five factors were identified as having a statistically significant influence on severe stunting cases: (1) the proportion of pregnant mothers with Chronic Energy Deficiency receiving nutritious food supplements, (2) the percentage of toddlers (6-23 months) receiving complementary nutritious food, (3) the proportion of households with access to good sanitation, (4) Gross Domestic Product per capita, and (5) the number of local healthcare facilities. These factors have negative relation to the stunting rates, meaning improving these factors will reduce the rates of severe stunting. The findings provide a validated statistical model for severe stunting and offer clear policy directions. To mitigate severe stunting, local governments should prioritize: enhancing nutritious food support for pregnant mothers and toddlers, improving household sanitation, stimulating local economic growth, and increasing accessibility to healthcare facilities.

Keywords


Backward Elimination; Severe Stunting; Negative Binomial Regression; Overdispersion; Poisson Regression.

Full Text:

DOWNLOAD [PDF]

References


Afroz, F. (2024). Proposing a New Estimator of Overdispersion for Multinomial Data. Dhaka University Journal of Science, 72(1), 56–62. https://doi.org/10.3329/dujs.v72i1.71247

Albab, F. U., & Pratiwirum, Y. (2022). Efektivitas Pencegahan Pernikahan Usia Dini Pada Badan Kependudukan Keluarga Berencana Nasional (Bkkbn) Kabupaten Sorong. Muadalah : Jurnal Hukum, 2(2), 115–124. https://doi.org/10.47945/muadalah.v2i2.757

Asna, A. F., & Syah, Muh. N. H. (2023). Chronic Energy Malnutrition in Mothers Associated with Stunting. Jurnal Gizi Dan Dietetik Indonesia (Indonesian Journal of Nutrition and Dietetics), 11(2), 77. https://doi.org/10.21927/ijnd.2023.11(2).77-84

Badan Pusat Statistik Jawa Tengah. (2024). PDRB Atas Dasar Harga Berlaku Menurut Kabupaten/Kota di Provinsi Jawa Tengah (Juta Rupiah), 2022-2023. Https://Jateng.Bps.Go.Id/Id/Statistics-Table/2/MTc0MCMy/-Seri-2010--Pdrb-Atas-Dasar-Harga-Berlaku-Menurut-Kabupaten-Kota-Di-Provinsi-Jawa-Tengah--Juta-Rupiah-.Html.

BPS-Statistics Indonesia Jawa Tengah Province. (2021). Percentage of Female Population Aged 10 Years and Over who Have Ever Been Married by Area of Residence and Age of First Marriage (Percent), 2018. Https://Jateng.Bps.Go.Id/En/Statistics-Table/2/OTc3IzI=/Percentage-of-Female-Population-Aged-10-Years-and-over-Who-Have-Ever-Been-Married-by-Area-of-------Residence-and-Age-of-First-Marriage.Html.

Cameron, A. C., & Trivedi, P. K. (2013). Regression Analysis of Count Data. In Econometric Society Monographs (2nd ed.). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9781139013567

Cavanaugh, J. E., & Neath, A. A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. WIREs Computational Statistics, 11(3), e1460. https://doi.org/https://doi.org/10.1002/wics.1460

da Silva, A. R., & Rodrigues, T. C. V. (2014). Geographically Weighted Negative Binomial Regression—incorporating overdispersion. Statistics and Computing, 24(5), 769–783. https://doi.org/10.1007/s11222-013-9401-9

Dewi, A., Lanti Retno dewi, Y., & Murti, B. (2019). Life Course Factors Associated with Stunting in Children Aged 2-5 Years: A Path Analysis. Journal of Maternal and Child Health, 4, 348–357. https://doi.org/10.26911/thejmch.2019.04.05.09

Directorate General of Village Government Development, M. of H. A. (2024). Posyandu Development Data.

Dobson, A. J., & Barnett, A. G. (2018). An Introduction to Generalized Linear Models. Chapman and Hall/CRC. https://doi.org/https://doi.org/10.1201/9781315182780

Dzupire, N. C., Ngare, P., & Odongo, L. (2018). A Poisson-Gamma Model for Zero Inflated Rainfall Data. Journal of Probability and Statistics, 2018. https://doi.org/10.1155/2018/1012647

Fávero, L. P., de Freitas Souza, R., Belfiore, P., Corrêa, H. L., & Haddad, M. F. C. (2021). Count Data Regression Analysis: Concepts, Overdispersion Detection, Zero-inflation Identification, and Applications with R. Practical Assessment, Research and Evaluation, 26, 1–22. https://doi.org/10.7275/44nn-cj68

Fernandez, G. A., & Vatcheva, K. P. (2022). A comparison of statistical methods for modeling count data with an application to hospital length of stay. BMC Medical Research Methodology, 22(1), 211. https://doi.org/10.1186/s12874-022-01685-8

Fitriyah, H., Kurnia, A., & Afendi, F. M. (2015). Negative Binomial Regression Methods To Analyze Factors Affecting Child Mortality Rates in West Java. International Conference On Research, Implementation And Education Of Mathematics And Sciences, 17–19.

Food and Agriculture Organization. (2024). The State of Food Security and Nutrition in the World 2024.

Gelhan, A., & Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.

Hossain, Z., Akter, R., Sultana, N., & Kabir, E. (2020). Modelling zero-truncated overdispersed antenatal health care count data of women in Bangladesh. PLoS ONE, 15(1). https://doi.org/10.1371/journal.pone.0227824

Htet, M. K., Do, T. T., Wah, T., Zin, T., Hmone, M. P., Raihana, S., Kirkwood, E., Hlaing, L. M., & Dibley, M. J. (2023). Socio-economic and agricultural factors associated with stunting of under 5-year children: Findings from surveys in mountains, dry zone and delta regions of rural Myanmar (2016-2017). Public Health Nutrition, 26(8), 1644–1657. https://doi.org/10.1017/S1368980023001076

Humphrey, J. H., Mbuya, M. N. N., Ntozini, R., Moulton, L. H., Stoltzfus, R. J., Tavengwa, N. V, Mutasa, K., Majo, F., Mutasa, B., Mangwadu, G., Chasokela, C. M., Chigumira, A., Chasekwa, B., Smith, L. E., Tielsch, J. M., Jones, A. D., Manges, A. R., Maluccio, J. A., Prendergast, A. J., … Makoni, T. (2019). Independent and combined effects of improved water, sanitation, and hygiene, and improved complementary feeding, on child stunting and anaemia in rural Zimbabwe: a cluster-randomised trial. The Lancet Global Health, 7(1), e132–e147. https://doi.org/10.1016/S2214-109X(18)30374-7

Ispriyanti, D., Prahutama, A., & Taryono, A. P. N. (2018). Modelling space of spread Dengue Hemorrhagic Fever (DHF) in Central Java use spatial durbin model. Journal of Physics: Conference Series, 1025(1). https://doi.org/10.1088/1742-6596/1025/1/012112

Johri, M., Subramanian, S. V, Koné, G. K., Dudeja, S., Chandra, D., Minoyan, N., Sylvestre, M.-P., & Pahwa, S. (2016). Maternal Health Literacy Is Associated with Early Childhood Nutritional Status in India. The Journal of Nutrition, 146(7), 1402–1410. https://doi.org/https://doi.org/10.3945/jn.115.226290

Kalinda, C., Qambayot, M. A., Ishimwe, S. M. C., Regnier, D., Bazimya, D., Uwizeyimana, T., Desie, S., Rudert, C., Gebremariam, A., Brennan, E., Karumba, S., Wong, R., & Bekele, A. (2024). Leveraging multisectoral approach to understand the determinants of childhood stunting in Rwanda: a systematic review and meta-analysis. Systematic Reviews, 13(1), 16. https://doi.org/10.1186/s13643-023-02438-4

Khan, M. M. A., Billah, M. A., Fatima, K., Islam, M. M., Sarker, B. K., Khanam, S. J., Banke-Thomas, A., & Khan, M. N. (2024). Child undernutrition and its association with household environmental conditions in Bangladesh. Public Health Nutrition, 28(1). https://doi.org/10.1017/S1368980024002325

Law of the Republic of Indonesia Number 16 of 2019 on the Amendment to Law, Pub. L. No. 16 (2019).

Le Gallo, J., López, F. A., & Chasco, C. (2020). Testing for spatial group-wise heteroskedasticity in spatial autocorrelation regression models: Lagrange multiplier scan tests. The Annals of Regional Science, 64(2), 287–312. https://doi.org/10.1007/s00168-019-00919-w

Lessani, M. N., & Li, Z. (2024). SGWR: similarity and geographically weighted regression. International Journal of Geographical Information Science, 38(7), 1232–1255. https://doi.org/10.1080/13658816.2024.2342319

Mardalena, S., Purhadi, P., Purnomo, J. D. T., & Prastyo, D. D. (2022). The Geographically Weighted Multivariate Poisson Inverse Gaussian Regression Model and Its Applications. Applied Sciences (Switzerland), 12(9). https://doi.org/10.3390/app12094199

Mathur, M. (2015). Spatial autocorrelation analysis in plant population: An overview. Journal of Applied and Natural Science, 7(1), 501–513. https://doi.org/10.31018/jans.v7i1.639

Moraga, P. (2024). Spatial Statistics for Data Science. CRC Press. https://www.routledge.com/

Mulyani, A. T., Khairinisa, M. A., Khatib, A., & Chaerunisaa, A. Y. (2025). Understanding Stunting: Impact, Causes, and Strategy to Accelerate Stunting Reduction—A Narrative Review. Nutrients, 17(9). https://doi.org/10.3390/nu17091493

Nariswari, R., Widhiyanthi, A. A., Arifin, S., & Yudistira, I. G. A. A. (2023, December). Zero inflated Poisson Regression: A solution of overdispersion in stunting data. In AIP Conference Proceedings (Vol. 2975, No. 1, p. 080007). AIP Publishing LLC. https://doi.org/10.1063/5.0181105

Partap, U., Young, E. H., Allotey, P., Sandhu, M. S., & Reidpath, D. D. (2019). Characterisation and correlates of stunting among Malaysian children and adolescents aged 6-19 years. Global Health, Epidemiology and Genomics, 4. https://doi.org/10.1017/gheg.2019.1

Payne, E. H., Gebregziabher, M., Hardin, J. W., Ramakrishnan, V., & Egede, L. E. (2018). An empirical approach to determine a threshold for assessing overdispersion in Poisson and negative binomial models for count data. Communications in Statistics: Simulation and Computation, 47(6), 1722–1738. https://doi.org/10.1080/03610918.2017.1323223

Pebesma, E., & Bivand, R. (2023). Spatial Data Science: With Applications in R. CRC Press. https://r-spatial.org/book/.

Pfeiffer, D. U., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., & Clements, A. C. A. (2008). Spatial Analysis in Epidemiology. In British Library Cataloguing. Oxford University Press.

Phillips, S. J., & Mbizvo, M. T. (2016). Empowering adolescent girls in Sub‐Saharan Africa to prevent unintended pregnancy and HIV: A critical research gap. International Journal of Gynecology & Obstetrics, 132(1), 1–3. https://doi.org/10.1016/j.ijgo.2015.10.005

Putri Adila, W., Sri Yanti, R., & Sriyanti, R. (2023). The relationship of chronic energy deficiency (CED), exclusive breastfeeding, and economic with stunting in Nagari Aua Kuning West Pasaman. Science Midwifery, 10(6), 4471-4480. www.midwifery.iocspublisher.orgJournalhomepage:www.midwifery.iocspublisher.org

Putri Ananda, E. Y., Annas, S., Ihsan, H., & Aswi, A. (2024). Negative Binomial Regression Analysis of Factors Influencing Stunting Cases in Central Lombok Regency. Inferensi, 7(3), 167. https://doi.org/10.12962/j27213862.v7i3.21436

Rah, J. H., Cronin, A. A., Badgaiyan, B., Aguayo, V. M., Coates, S., & Ahmed, S. (2015). Household sanitation and personal hygiene practices are associated with child stunting in rural India: a cross-sectional analysis of surveys. BMJ open, 5(2), e005180. https://doi.org/10.1136/bmjopen-2014-005180

Regulation of the Minister of Health of the Republic of Indonesia Number 2 of 2020 on Child Anthropometry Standards, Pub. L. No. 2 (2020).

Rohmaniah, E., Rahmawati, I., & A’la, M. Z. (2025). The Impact of Early Marriage: a Literature Review. Jurnal Ners, 9(2), 2176–2183. https://doi.org/10.31004/jn.v9i2.42841

Sajalia, H., Dewi, Y. L. R., & Murti, B. (2018). Life Course Epidemiology on the Determinants of Stunting in Children Under Five in East Lombok, West Nusa Tenggara. Journal of Maternal and Child Health, 03(04), 242–251. https://doi.org/10.26911/thejmch.2018.03.04.01

Salmerón, R., García, C. B., & García, J. (2018). Variance Inflation Factor and Condition Number in multiple linear regression. Journal of Statistical Computation and Simulation, 88(12), 2365–2384. https://doi.org/10.1080/00949655.2018.1463376

Salmerón, R., García, C., & García, J. (2020). Overcoming the inconsistences of the variance inflation factor: A redefined VIF and a test to detect statistical troubling multicollinearity. arXiv preprint arXiv:2005.02245. http://arxiv.org/abs/2005.02245

Sandøy, I. F., Mudenda, M., Zulu, J., Munsaka, E., Blystad, A., Makasa, M. C., Mæstad, O., Tungodden, B., Jacobs, C., Kampata, L., Fylkesnes, K., Svanemyr, J., Moland, K. M., Banda, R., & Musonda, P. (2016). Effectiveness of a girls’ empowerment programme on early childbearing, marriage and school dropout among adolescent girls in rural Zambia: study protocol for a cluster randomized trial. Trials, 17(1), 588. https://doi.org/10.1186/s13063-016-1682-9

Santoso, P., & Pujianto, T. (2024). The Analysis of Factors that Influence Stunting. Jurnal Ners Dan Kebidanan (Journal of Ners and Midwifery), 11(2), 200–208. https://doi.org/10.26699/jnk.v11i2.ART.p200-208

Seifu, B. L., Tesema, G. A., Fentie, B. M., Yehuala, T. Z., Moloro, A. H., & Mare, K. U. (2024). Geographical variation in hotspots of stunting among under-five children in Ethiopia: A geographically weighted regression and multilevel robust Poisson regression analysis. PLoS ONE, 19(5 May). https://doi.org/10.1371/journal.pone.0303071

Silumbwe, A., Nkole, T., Munakampe, M. N., Cordero, J. P., Milford, C., Zulu, J. M., & Steyn, P. S. (2020). Facilitating community participation in family planning and contraceptive services provision and uptake: community and health provider perspectives. Reproductive Health, 17(1), 119. https://doi.org/10.1186/s12978-020-00968-x

Soliman, A., De Sanctis, V., Alaaraj, N., Ahmed, S., Alyafei, F., Hamed, N., & Soliman, N. (2021). Early and long-term consequences of nutritional stunting: From childhood to adulthood. Acta Biomedica, 92(1). https://doi.org/10.23750/abm.v92i1.11346

Subramanee, S. D., Agho, K., Lakshmi, J., Huda, Md. N., Joshi, R., & Akombi-Inyang, B. (2022). Child Marriage in South Asia: A Systematic Review. International Journal of Environmental Research and Public Health, 19(22), 15138. https://doi.org/10.3390/ijerph192215138

Taslim, N. A., Farradisya, S., Gunawan, W. Ben, Alfatihah, A., Barus, R. I. B., Ratri, L. K., Arnamalia, A., Barazani, H., Samtiya, M., Mayulu, N., Kim, B., Hardinsyah, H., Surya, E., & Nurkolis, F. (2023). The interlink between chrono-nutrition and stunting: current insights and future perspectives. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1303969

Tiara, Y., Aidi, M. N., Erfiani, E., & Rachmawati, R. (2023). Overdispersion Handling In Poisson Regression Model By Applying Negative Binomial Regression. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(1), 0417–0426. https://doi.org/10.30598/barekengvol17iss1pp0417-0426

TN2PK. (2017). 100 Kabupaten/Kota Prioritas Untuk Intervensi Anak Kerdil (Stunting).

Vaivada, T., Akseer, N., Akseer, S., Somaskandan, A., Stefopulos, M., & Bhutta, Z. A. (2020). Stunting in childhood: an overview of global burden, trends, determinants, and drivers of decline. The American Journal of Clinical Nutrition, 112, 777S-791S. https://doi.org/https://doi.org/10.1093/ajcn/nqaa159

Yoosefi Lebni, J., Solhi, M., Ebadi Fard Azar, F., Khalajabadi Farahani, F., & Irandoost, S. F. (2023). Exploring the Consequences of Early Marriage: A Conventional Content Analysis. INQUIRY: The Journal of Health Care Organization, Provision, and Financing, 60. https://doi.org/10.1177/00469580231159963

Yuliastanti, T., Ambarwati, W. N., Sulastri, S., & Rahmawati, A. (2023). History of Chronic Energy Deficiency (CED) of Pregnant Women and Stunting in Toddlers. International Journal of Nursing Information, 2(2), 7–12. https://doi.org/10.58418/ijni.v2i2.45

Zheng, B., Lin, X., Yin, D., & Qi, X. (2023). Does Tobler’s first law of geography apply to internet attention? A case study of the Asian elephant northern migration event. PLoS ONE, 18(3), 1–17. https://doi.org/10.1371/journal.pone.0282474




DOI: https://doi.org/10.31764/jtam.v10i1.34846

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Rhendy K. P. Widiyanto, Fatkhurokhman Fauzi, Achmad Fauzan, Anang Kurnia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: