Optimization of Rice Production Forecasting using Hybrid ANN-PSO
Abstract
Rice production is a critical component in sustaining national food security, especially Indonesia. The availability of sufficient, affordable, and equitable food is a major challenge for Indonesia. One approach to addressing this challenge is by developing reliable and accurate models for predicting food production. In this study, a hybrid approach that combines Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) algorithms is used to optimize the performance of modeling and prediction of rice production in Central Java, Indonesia. This study uses secondary data in the form of monthly time series data from the Central Java Provincial Statistics Agency (BPS), Meteorology, Climatology, and Geophysics Agency (BMKG), and satellite imagery data with an observation period from January 2019 to December 2024. The input variables in this study include harvested area, precipitation, number of rainy days, atmospheric pressure, wind speed, NDWI, and NDVI while the output variable is rice production in Central Java. The test results using the ANN model provided an RMSE value of 0.1312 and a MSE of 0.0172, while the ANN-PSO model provided an RMSE value of 0.0259 and a MSE of 0.00067. These results indicate that the PSO algorithm is able to optimize the performance of the ANN model in predicting rice production in Central Java.
Keywords
Full Text:
DOWNLOAD [PDF]References
Abdolrasol, M. G. M., Hussain, S. M. S., & Ustun, T. S. (2021). Artificial Neural Networks Based Optimization Techniques: A Review. Electronics, 10(21), 1–43. https://doi.org/https://doi.org/10.3390/electronics10212689
Ajay, P. M., Ragunath, K. P., Pazhanivelan, S., Muthumanickam, D., Sivamurugan, A. P., & Vanitha, G. (2025). Rice yield predictions using remote sensing and machine learning algorithms: A review. Plant Science Today, 12(1), 1–19. https://doi.org/10.14719/pst.5976
Ansari, A., Lin, Y. P., & Lur, H. S. (2021). Evaluating and adapting climate change impacts on rice production in indonesia: A case study of the keduang subwatershed, Central Java. Environments - MDPI, 8(11), 1–17. https://doi.org/10.3390/environments8110117
Ansari, A., Pranesti, A., Telaumbanua, M., Alam, T., Taryono, Wulandari, R. A., Nugroho, B. D. A., & Supriyanta. (2023). Evaluating the effect of climate change on rice production in Indonesia using multimodelling approach. Heliyon, 9(9), 1–15. https://doi.org/10.1016/j.heliyon.2023.e19639
BPS. (2025). Luas Panen, Produktivitas, dan Produksi Padi Menurut Kabupaten/Kota di Provinsi Jawa Tengah, 2024. BPS. https://jateng.bps.go.id/id/statistics-table/3/WmpaNk1YbGFjR0pOUjBKYWFIQlBSU3MwVHpOVWR6MDkjMw==/luas-panen--produktivitas--dan-produksi-padi-menurut-kabupaten-kota-di-provinsi-jawa-tengah--2020.html?year=2024
Brinkhoff, J., Clarke, A., Dunn, B. W., & Groat, M. (2024). Analysis and forecasting of Australian rice yield using phenology-based aggregation of satellite and weather data. Agricultural and Forest Meteorology, 353(May), 110055. https://doi.org/10.1016/j.agrformet.2024.110055
Chanakot, B., & Phoksawat, K. (2024). Artificielle Analysis of Consumer Sentiments towards Online Shopping Using Context-Free Grammar and Deep Learning. Revue D Intelligence Artificielle, 38(1), 193–199. https://doi.org/10.18280/ria.380119
European Space Agency (ESA). (2021). Sentinel-2 MSI: MultiSpectral Instrument, Level-2A (COPERNICUS/S2_SR_HARMONIZED). https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
Farbo, A., Sarvia, F., De Petris, S., Basile, V., & Borgogno-Mondino, E. (2024). Forecasting corn NDVI through AI-based approaches using sentinel 2 image time series. ISPRS Journal of Photogrammetry and Remote Sensing, 211(April), 244–261. https://doi.org/10.1016/j.isprsjprs.2024.04.011
Fatima, S. S. W., & Rahimi, A. (2024). A Review of Time-Series Forecasting Algorithms for Industrial Manufacturing Systems. Machines, 12(6). https://doi.org/10.3390/machines12060380
Fitriyah, A. T., Chamidah, N., & Saifudin, T. (2024). Prediction of Paddy Production in Indonesia Using Semiparametric Time Series Regression Least Square Spline Estimator. Data and Metadata, 4(527), 1–12. https://doi.org/https://doi.org/10.56294/dm2025527
Garro, B. A., & Vázquez, R. A. (2015). Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms. Computational Intelligence and Neuroscience, 2015(369298), 1–20. https://doi.org/10.1155/2015/369298
Hamzah, M. I. H., Aprillia, H., & Giyantara, A. (2025). Hybrid ANN-PSO Based MPPT Optimization for Enhanced Solar Panel Efficiency. ELKHA : Jurnal Teknik Elektro, 17(1), 32–37. https://doi.org/https://doi.org/10.26418/elkha.v17i1
Heaton, J. (2015). Artificial Intelligence for Humans Volume 3 : Deep Learning and Neural Networks (T. Heaton (ed.); 1.0). CreateSpace Independent Publishing Platform.
Idris, I. S. K., & Mustofa, Y. A. (2025). Peningkatan Akurasi Naïve Bayes dengan Particle Swarm Optimization dalam Analisis Sentimen Ibu Kota Nusantara ( IKN ) Improving Naïve Bayes Accuracy with Particle Swarm Optimization in Sentiment Analysis of Ibu Kota Nusantara ( IKN ). Jambura Journal of Electrical and Electronics Engineering, 7(2), 186–194. https://doi.org/10.37905/jjeee.v7i2.31589
Islam, M. M., Matsushita, S., Noguchi, R., & Ahamed, T. (2021). Development of remote sensing-based yield prediction models at the maturity stage of boro rice using parametric and nonparametric approaches. Remote Sensing Applications: Society and Environment, 22(100494), 1–18. https://doi.org/https://doi.org/10.1016/j.rsase.2021.100494
Li, L. (2023). Dynamic Cost Estimation of Reconstruction Project Based on Particle Swarm Optimization Algorithm. Informatica (Slovenia), 47(2), 173–182. https://doi.org/10.31449/inf.v47i2.4026
Miao, K., Feng, Q., & Kuang, W. (2021). Particle swarm optimization combined with inertia‐free velocity and direction search. Electronics (Switzerland), 10(5), 1–29. https://doi.org/10.3390/electronics10050597
Mijwel, M. M. (2021). Artificial Neural Networks Advantages and Disadvantages. Mesopotamian Journal of Big Data, 2021(2021), 29–31. https://doi.org/10.58496/MJBD/2021/006
Ministry of Agriculture of the Republic of Indonesia. (2024). Statistik Pertanian AGRICULTURAL STATISTICS 2024 2024. Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian Republik Indonesia.
Modesti, P., & Borsato, M. (2022). Artificial Intelligence-Based Method for Forecasting Flowtime in Job Shops. VINE Journal of Information and Knowledge Management Systems, 54(2), 452–472. https://doi.org/https://doi.org/10.1108/VJIKMS-08-2021-0146
Sardjono, W., Christian, L., Juwitasary, H., & Putra, E. P. (2019). Rice development availability model using system dynamics method. International Journal of Recent Technology and Engineering, 8(3), 2741–2746. https://doi.org/10.35940/ijrte.C3871.098319
Satpathi, A., Setiya, P., Das, B., Nain, A. S., Jha, P. K., Singh, S., & Singh, S. (2023). Comparative Analysis of Statistical and Machine Learning Techniques for Rice Yield Forecasting for Chhattisgarh, India. Sustainability (Switzerland), 15(3), 1–18. https://doi.org/10.3390/su15032786
Scholten, T., Taghizadeh-Mehrjardi, R., Emadi, M., Cherati, A., Heung, B., & Mosavi, A. (2021). Bio-Inspired Hybridization of Artificial Neural Networks : An Application for Mapping the Spatial Distribution of Soil Texture Fractions. Remote Sensing, 13(1025), 1–23. https://doi.org/https://doi.org/ 10.3390/rs13051025 Academic
Setiawan, C., & Rosadi, M. I. (2025). Penerapan Artificial Neural Network untuk Prediksi Produksi Padi di Sumatera. JIP (Jurnal Informatika Polinema), 11(4), 487–494. https://doi.org/https://doi.org/10.33795/jip.v11i4.7727
Setiyanto, A., Suryadi, M., Azis, M., & Effendi, M. W. (2024). Predicting national rice production 2023−2024 under rising food and energy prices and global climate change. BIO Web of Conferences, 119. https://doi.org/10.1051/bioconf/202411901012
Shariati, M., Mafipour, M. S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M. N. A., Nguyen, H., Dou, J., Song, X., & Poi-Ngian, S. (2019). Application of a Hybrid Artificial Neural Model in Behavior Prediction of Channel Shear Connectors Embedded in Normal and. Applied Sciences, 9(5534), 1–22. https://doi.org/10.3390/app9245534
Triyanto, E., Sismoro, H., & Laksito, A. D. (2019). Implementasi Algoritma Regresi Linear Berganda untuk Memprediksi Produksi Padi di Kabupaten Bantul. RABIT : Jurnal Teknologi Dan Sistem Informasi Univrab, 4(2), 73–86. https://doi.org/https://doi.org/10.36341/rabit.v4i2.666
Widians, J. A., Wardoyo, R., & Hartati, S. (2024). Feature selection based on chi-square and ant colony optimization for multi-label classification. International Journal of Electrical and Computer Engineering (IJECE), 14(3), 3303–3312. https://doi.org/10.11591/ijece.v14i3.pp3303-3312
Zaneta, S., & Ayuningsasi, A. A. K. (2025). The Influence of Rice Production, International Rice Prices, Population, and Gross Domestic Product (GDP) on Indonesia’s Rice Imports. International Journal of Economic Literature (INJOLE), 3(3), 843–859.
Zhang, Z. (2018). Multivariate Time Series Analysis in Climate and Environmental Research. Springer, Cham. https://doi.org/https://doi.org/10.1007/978-3-319-67340-0_1
DOI: https://doi.org/10.31764/jtam.v10i1.34879
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Wahyuni Windasari, Anggit Gusti Nugraheni

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office:


















2.jpg)
