Analysis of Student Errors in Solving Non Homogeneous Differential Equations Problems Based on Kastolan Stages

Septi Dariyatul Aini, Sri Irawati

Abstract


The purpose of this study is to identify and classify any errors made by students in solving problems of non-homogeneous order n differential equations and to find out what causes students to make errors in solving problems. This research is a qualitative descriptive research. The instruments used in this study were the Mathematical Ability Test, the Differential Equation Problem Solving Test and interview guidelines. The selection of subjects began by giving a math ability test to 35 students in the class. From the results of these tests, 3 students were then selected from a variety of errors to become research subjects. The criteria for selecting research subjects refer to: (a) the number of mistakes made by students in answering test questions; (b) variations in the types of errors made by students; (c) have the ability to communicate both orally and in writing; (d) willing to be interviewed. Based on the results of the study, information was obtained that the types of student errors in solving non-homogeneous order n differential equations based on the Kastolan stages were: (1) conceptual errors consisted of errors in the use of formulas in answering questions and using formulas that were not in accordance with the conditions or prerequisites for enactment formulas, (2) procedural errors consist of errors because they cannot solve the problem in the simplest form and errors because they cannot continue the completion step, (3) technical errors consist of errors in calculating the value of a arithmetic operation, errors in writing that there is constant or variable written wrong or forgot not to write or an error moving a constant or variable from one step to the next, and improperly substituting values into variables. While the factors that cause student errors in solving problems of non-homogeneous order n differential equations are students who do not understand the prerequisite materials needed to solve problems of non-homogeneous order n differential equations, do not understand the concept of determining the general form of a special solution with certain prerequisites, student skills in carrying out arithmetic operations they are still lacking, less thorough, in a hurry, and nervous so that there are several completion steps that are miscalculated, missed, not written down, and not converted to the simplest form.

Keywords


Error analysis; Non homogeneous; Kastolan stages;

Full Text:

DOWNLOAD [PDF]

References


Aini, S. D., Jannah, U. R., & Masruroh, R. (2017). Identifikasi Kesalahan Siswa dalam Menyelesaikan Masalah Trigonometri. Jurnal SIGMA, 3(1), 17–25.

Atmowardoyo, H. (2018). Research Methods in TEFL Studies : Descriptive. Journal of Language Teaching and Research, 9(1), 197–204. http://dx.doi.org/10.17507/jltr.0901.25

Dj Pomalato, S. W., Ili, L., Ningsi, B. A., Fadhilaturrahmi, Hasibuan, A. T., & Primayana, K. H. (2020). Student error analysis in solving mathematical problems. Universal Journal of Educational Research, 8(11), 5183–5187. https://doi.org/10.13189/ujer.2020.081118

D, E.K., Nizaruddin, & Pramasdyahsari, A. S. (2021). Analysis of Studet Errors in Solving SPLDV Questions Based on Castolan Stages Reviewed From Students' Cognitive Style. International Journal of Research in Education, 1(2), 110–120.

Evriyanti, I., Yuniawatika, & Madyono, S. (2020). Errors Analysis Resolving Problems Story Based on Watson’s Error Category a Student in the 4 th Class of Elementary School. Proceedings of the 2nd Early Childhood and Primary Childhood Education (ECPE 2020), 487, 115–121. https://doi.org/10.2991/assehr.k.201112.022

Fitriani, H. N., Turmudi, T., & Prabawanto, S. (2018). Analysis Of Students Error in Mathematical Problem Solving Based on Newman’s Error Analysis. International Conference on Mathematics and Science Education, 3, 791–796.

Budiyono & Guspriyati, W. (2009). Jenis-jenis Kesalahan dalam Menyelesaikan Soal Persamaan Diferensial Biasa (PDB) Studi Kasus pada Mahasiswa Semester V Program Studi Pendidikan Matematika Universitas Muhammadiyah Purworwjo. Prosiding Dalam Seminar Nasional Matematika Dan Pendidikan Matematika Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember 2009, 131–140.

Haerani, A., Novianingsih, K., & Turmudi, T. (2021). Analysis of Students’ Errors in Solving Word Problems Viewed from Mathematical Resilience. JTAM (Jurnal Teori Dan Aplikasi Matematika), 5(1), 246. https://doi.org/10.31764/jtam.v5i1.3928

Herholdt, R., & Sapire, I. (2014). An error analysis in the early grades mathematics – a learning opportunity? Background: Teachers learning from child assessment in national tests. South African Journal Od Childhood Education, 4(1), 42–60.

Ketterlin-Geller, L. R., & Yovanoff, P. (2009). Diagnostic Assessments in Mathematics to Support Instructional Decision Making. Practical Assessment,Research & Evaluation, 14(16), 1–11.

Khusniah, R. (2014). Analisis Kesalahan Mahasiswa Program Studi Pendidikan Matematika STKIP PGRI Pasuruan dalam Menyelesaikan Soal Persamaan Diferensial Linier Homogen dan Tak Homogen pada Mata Kuliah Persamaan DIiferensial II. Jurnal Ilmiah Edukasi Dan Sosial, 5(1), 80–89.

Mauliandri, R., & Kartini. (2020). Analisis Kesalahan Siswa Menurut Kastolan Dalam Pada Siswa Smp. Magister Pendidikan Matematika, Fakultas Keguruan Dan Ilmu Pendidikan , Universitas Riau Magister Pendidikan Matematika, Fakultas Keguruan Dan Ilmu Pendidikan, Universitas Riau, 09(2), 107–123.

Miles, B. M. & Huberman, M. 1992. Analisis Data Kualitatif Buku Sumber Tentang Metode-metode Baru. Jakarta: UIP.

Naisunis, Y. P., Taneo, P. N. L., & Daniel, F. (2018). Analisis Kesalahan Mahasiswa dalam Pemecahan Masalah pada Mata Kuliah Persamaaan Diferensial. Edumatica, 08(02), 107–119.

Nassaji, H. (2015). Qualitative and descriptive research: Data type versus data analysis. Language Teaching Research, 19(2), 129–132. https://doi.org/10.1177/1362168815572747

Nuryadi. (2018). Pengantar Persamaan Diferensial Elementer dan Penerapannya. Yogyakarta: Penebar Media Pustaka.

Oktavia, A., & Khotimah, R. P. (2016). Analisis kesulitan mahasiswa dalam menyelesaikan persamaan differensial tingkat satu. Prosiding dalam KNPMP I Universitas Muhammadiyah Surakarta, 12 Maret 2016, 99–108.

Priyani, H. A., & Ekawati, R. (2018). Error analysis of mathematical problems on TIMSS: A case of Indonesian secondary students. IOP Conference Series: Materials Science and Engineering, 296(1). https://doi.org/10.1088/1757-899X/296/1/012010

Riantini W., N. N., Suparta, I. N., & Sudiarta, I. G. P. (2020). Analysis of Student Errors in Learning Circle Based on the Watson Error Category. International Journal on Emerging Mathematics Education, 4(1), 31. https://doi.org/10.12928/ijeme.v4i1.15840

Sihombing, S. C., & Dahlia, A. (2018). Penyelesaian Persamaan Diferensial Linier Orde 1 dan 2 disertai Nilai Awal dengan Menggunakan Metode Runge Kutta Orde Lima Butcher dan Felhberg (RKF45). Jurnal Matematika Integratif, 14(1), 51. https://doi.org/10.24198/jmi.v14.n1.15953.51-60

Sulistyorini, Y. (2017). Analisis Kesalahan Dan Scaffolding Dalam Penyelesaian Persamaan Diferensial. KALAMATIKA Jurnal Pendidikan Matematika, 2(1), 91. https://doi.org/10.22236/kalamatika.vol2no1.2017pp91-104

Ningsih, Y.L. & Mulbasari, A. S. (2019). Exploring Students’ Difficulties in Solving Nonhomogeneous 2nd Order Ordinary Differential Equations with Initial Value Problems. Al-Jabar: Jurnal Pendidikan Matematika, 10(2), 233–242.




DOI: https://doi.org/10.31764/jtam.v6i1.5558

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Septi Dariyatul Aini, Sri Irawati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: