Inclusion Properties of Henstock-Orlicz Spaces
Abstract
Henstock-Orlicz spaces were generally introduced by Hazarika and Kalita in 2021. In general, a function is Lebesgue integral if only if that function and its modulus are Henstock-Kurzweil integrable functions. Moreover, suppose a function is a finite measurable function with compact supports. In that case, the function is a Henstock-Kurzweil integrable function if only if the function is a Lebesgue integrable function. Due to these properties, Henstock-Orlicz spaces were constructed by utilizing Young functions. This definition is almost similar to the definition of Orlicz spaces, but by embedding the Henstock-Kurzweil integral, and the norm used is the Luxembourg norm. Therefore, an analysis of properties in these spaces is needed carried out more deeply. This research was using a literature study on inclusion properties from scientific journals, especially those related to the Orlicz Spaces. And based on the definition of Henstock-Orlicz spaces and its norm, we formulate a hypothesis regarding the inlcusion properties. By deductive proof, we proof the hypothesis and state it as theorem. In this study, we obtain sufficient and necessary conditions for the inclusion properties in Henstock-Orlicz spaces.
Keywords
Full Text:
DOWNLOAD [PDF]References
Boccuto, A., Riečan, B., & Vrábelová, M. (2012). Kurzweil - Henstock integral in Riesz spaces. In Bentham Science Publishers. Bentham Science Publishers. https://doi.org/10.2174/97816080500311090101
Ebadian, A., & Jabbari, A. (2021). Generalization of Orlicz spaces. Monatsh Math, 196, 699–736. https://doi.org/https://doi.org/10.1007/s00605-021-01627-4
Ferreira, R., Hästö, P., & Ribeiro, A. M. (2020). Characterization of generalized Orlicz spaces. Communications in Contemporary Mathematics, 22(2), 1–18. https://doi.org/10.1142/S0219199718500797
Hazarika, B., & Kalita, H. (2021). Henstock-Orlicz space and its dense space. Asian-European Journal of Mathematics, 14(7), 1–17. https://doi.org/10.1142/S179355712150114X
Herlinawati, E. (2021). Beberapa sifat fungsi-fungsi terintegralkan henstock-kurzweil di ruang berdimensi-n (. JMPM: Jurnal Matematika Dan Pendidikan Matematika, 6(1), 81–89.
Kalita, H., & Hazarika, B. (2021). Countable additivity of Henstock–Dunford integrable functions and Orlicz Space. Analysis and Mathematical Physics, 11(2), 1–13. https://doi.org/10.1007/s13324-021-00533-0
Kalita, H., Salvador, S., & Hazarika, B. (2020). Henstock-Orlicz spaces with respect to vector measure Henstock-Orlicz spaces with respect to vector measure. 14th International Conference MSAST, December.
Lee, T. Y. (2011). Henstock-Kurzweil integration on Euclidean spaces. In Henstock-Kurzweil Integration on Euclidean Spaces. world scientific. https://doi.org/10.1142/7933
Leng, N. W., & Yee, L. P. (2018). An Alternative Definition Of The Henstock-Kurzweil Integral Using Primitives. New Zealand Journal of Mathematics, 48, 121–128.
Liu, G. Y. and W. (2016). The Distributional Henstock-Kurzweil Integral and Applications: a Survey. Journal of Mathematical Study, 49(4), 433–448. https://doi.org/10.4208/jms.v49n4.16.06
Malý, J., & Kuncová, K. (2019). On a generalization of henstock-kurzweil integrals. Mathematica Bohemica, 144(4), 393–422. https://doi.org/10.21136/MB.2019.0038-19
Masta, A. ., Gunawan, H., & Budhi, W. S. (2016). Inclusion properties of Orlicz and weak Orlicz spaces. Journal of Mathematical and Fundamental Sciences, 48(3), 193–203. https://doi.org/10.5614/j.math.fund.sci.2016.48.3.1
Masta, A. ., Gunawan, H., & Setya-Budhi, W. (2017a). An inclusion property of Orlicz-Morrey spaces. Journal of Physics: Conference Series, 893(1). https://doi.org/10.1088/1742-6596/893/1/012015
Masta, A. ., Gunawan, H., & Setya-Budhi, W. (2017b). On Inclusion Properties of Two Versions of Orlicz–Morrey Spaces. Mediterr. J. Math, 14(228). https://doi.org/https://doi.org/10.1007/s00009-017-1030-7
Mendoza-Torres, F. J., Morales-Macías, M. G., Sánchez-Perales, S., & Escamilla-Reyna, J. A. (2015). Henstock-Kurzweil Integral Transforms and the Riemann-Lebesgue Lemma. Fourier Transform - Signal Processing and Physical Sciences. https://doi.org/10.5772/59766
Mendoza Torres, F. J., Escamilla Reyna, J. A., & Sánchez-Perales, S. (2002). Some Result about The Henstock-Kurzweil Fourier Transform. Mathematica Bohemica, 127(1), 379–386.
Mendoza Torres, F. J., Escamilla Reyna, J. A., & Sánchez Perales, S. (2009). Inclusion relations for the spaces L(ℝ), HK (ℝ) BV(ℝ), and L 2(ℝ). Russian Journal of Mathematical Physics, 16(2), 287–289. https://doi.org/10.1134/S1061920809020113
Prayoga, P. ., Fatimah, S., & Masta, A. . (2020). Several Properties of Discrete Orlicz Spaces. European Alliance for Innovation n.o. Https://Doi.Org/10.4108/Eai.12-10-2019.2296392, 3(2). https://doi.org/10.4108/eai.12-10-2019.2296392
Royden, H., & Fitzpatrick, P. (2010). Real Analysis (4th Edition). In Prentice Hall.
Sánchez-Perales, S., Mendoza Torres, F. J., & Escamilla Reyna, J. A. (2012). Henstock-kurzweil integral transforms. International Journal of Mathematics and Mathematical Sciences, 2012, 1–12. https://doi.org/10.1155/2012/209462
Talvila, E. (2002). Henstock-kurzweil fourier transforms. Illinois Journal of Mathematics, 46(4), 1207–1226.
DOI: https://doi.org/10.31764/jtam.v6i3.8618
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Elin Herlinawati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: