Robust Optimization Model for Twitter Sentiment Analysis of PeduliLindungi Application

Alfia Azizah Fatimathuzahra, Diah Chaerani, Firdaniza Firdaniza

Abstract


Technological advances during the COVID-19 pandemic in Indonesia gave rise to the PeduliLindungi application which is developed by the government to prevent the spread of COVID-19. The advantages and disadvantages of developing PeduliLindungi can be seen from the responses and opinions from users, one of which is through the Twitter. A person's opinion about PeduliLindungi based on the tweet can be classified into positive, negative, or neutral categories using a Machine Learning approach with the Support Vector Machine (SVM) algorithm. In this paper, multiobjective optimization modeling is used to maximize the performance metrics, which are the value of Accuracy, Precision, Recall, and F1-Score. The value of the performance metrics is considered to contain uncertainty factors. Therefore, the optimization problem is solved by using Robust Optimization to handle the uncertainty factor. The data uncertainty is assumed to be belongs to polyhedral uncertainty set thus the resulted robust is computationally tractable. Numerical experiment is presented to complete the discussion.

Keywords


PeduliLindungi; Robust Optimization; Multiobjective Function; Sentiment Analysis; Support Vector Machine.

Full Text:

DOWNLOAD [PDF]

References


Aliakbari, A., & Seifbarghy, M. (2011). A Supplier Selection Model for Social Responsible Supply Chain. Journal of Optimization in Industrial Engineering, Volume 4(8), 41–53. http://www.qjie.ir/article_86.html

Ben-Tal, A., Ghaoui, L. El, & Nemirovski, A. (2009). Robust Optimization : Princeton Series. Princeton University Press.

Ben-Tal, A., & Nemirovski, A. (2002). Robust Optimization-Methodology and Applications. Mathematical Programming, 92(3), 453–480. https://doi.org/10.1007/s101070100286

Chaerani, D., & Roos, C. (2013). Handling Optimization under Uncertainty Problem Using Robust Counterpart Methodology. Jurnal Teknik Industri, 15(2). https://doi.org/10.9744/jti.15.2.111-118

Dixon, S. (2022). Leading countries based on number of Twitter users as of January 2022. Statista. https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/

Elsaid Moussa, M., Hussein Mohamed, E., & Hassan Haggag, M. (2021). Opinion mining: a hybrid framework based on lexicon and machine learning approaches. International Journal of Computers and Applications, 43(8), 786–794. https://doi.org/10.1080/1206212X.2019.1615250

Firdaniza, F., Ruchjana, B., Chaerani, D., & Radianti, J. (2021). Information Diffusion Model in Twitter: A Systematic Literature Review. Information, 13(1), 13. https://doi.org/10.3390/info13010013

Gorissen, B. L., Yanıkoğlu, İ., & den Hertog, D. (2015). A practical guide to robust optimization. Omega, 53, 124–137. https://doi.org/10.1016/j.omega.2014.12.006

Hertog, D. den. (2013). Practical Robust Optimization: an Introduction.

Janjanam, P., & Reddy, C. H. P. (2019). Text summarization: An essential study. ICCIDS 2019 - 2nd International Conference on Computational Intelligence in Data Science, Proceedings, 1–6. https://doi.org/10.1109/ICCIDS.2019.8862030

Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining: The ASA Data Science Journal, 1–8. https://doi.org/10.1002/sam.11583

Kannan, S., Gurusamy, V., Vijayarani, S., Ilamathi, J., & Nithya, M. (2015). Preprocessing Techniques for Text Mining Preprocessing Techniques for Text Mining. International Journal of Computer Science & Communication Networks, 5(October 2014), 7–16. https://doi.org/2249-5789

Kumar, R., Pannu, H. S., & Malhi, A. K. (2020). Aspect-based sentiment analysis using deep networks and stochastic optimization. Neural Computing and Applications, 32(8), 3221–3235. https://doi.org/10.1007/s00521-019-04105-z

Kurniawati, Khadapi, M., Riana, D., Arfian, A., Rahmawati, E., & Heriyanto. (2020). Public Acceptance Of Pedulilindungi Application In The Acceleration Of Corona Virus (Covid-19) Handling. Journal of Physics: Conference Series, 1641(1), 012026. https://doi.org/10.1088/1742-6596/1641/1/012026

Liu, B. (2012). Sentiment Analysis and Opinion Mining. Morgan & Claypool.

M, H., & M.N, S. (2015). A Review on Evaluation Metrics for Data Classification Evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 01–11. https://doi.org/10.5121/ijdkp.2015.5201

Priya, V., & Umamaheswari, K. (2019). Enhanced continuous and discrete multi objective particle swarm optimization for text summarization. Cluster Computing, 22(S1), 229–240. https://doi.org/10.1007/s10586-018-2674-1

Rao, S. S. (2009). Engineering Optimization: Theory and Practice. John Wiley & Sons, Inc.

Saadah, M. N., Atmagi, R. W., Rahayu, D. S., & Arifin, A. Z. (2013). Information Retrieval Of Text Document With Weighting TF-IDF and LCS. Jurnal Ilmu Komputer Dan Informasi, 6(1), 34. https://doi.org/10.21609/jiki.v6i1.216

Suthaharan, S. (2016). Support Vector Machine (pp. 207–235). Springer. https://doi.org/10.1007/978-1-4899-7641-3_9

Vakili, M., Ghamsari, M., & Rezaei, M. (2020). Performance Analysis and Comparison of Machine and Deep Learning Algorithms for IoT Data Classification. https://doi.org/https://doi.org/10.48550/

Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. Springer New York. https://doi.org/10.1007/978-1-4757-3264-1

Yang, X.-S. (2014). Multi-Objective Optimization. In Nature-Inspired Optimization Algorithms (pp. 197–211). Elsevier. https://doi.org/10.1016/B978-0-12-416743-8.00014-2




DOI: https://doi.org/10.31764/jtam.v6i3.8624

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Alfia Azizah Fatimathuzahra, Diah Chaerani, Firdaniza Firdaniza

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: