Robust Optimization Model for Twitter Sentiment Analysis of PeduliLindungi Application
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Aliakbari, A., & Seifbarghy, M. (2011). A Supplier Selection Model for Social Responsible Supply Chain. Journal of Optimization in Industrial Engineering, Volume 4(8), 41–53. http://www.qjie.ir/article_86.html
Ben-Tal, A., Ghaoui, L. El, & Nemirovski, A. (2009). Robust Optimization : Princeton Series. Princeton University Press.
Ben-Tal, A., & Nemirovski, A. (2002). Robust Optimization-Methodology and Applications. Mathematical Programming, 92(3), 453–480. https://doi.org/10.1007/s101070100286
Chaerani, D., & Roos, C. (2013). Handling Optimization under Uncertainty Problem Using Robust Counterpart Methodology. Jurnal Teknik Industri, 15(2). https://doi.org/10.9744/jti.15.2.111-118
Dixon, S. (2022). Leading countries based on number of Twitter users as of January 2022. Statista. https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/
Elsaid Moussa, M., Hussein Mohamed, E., & Hassan Haggag, M. (2021). Opinion mining: a hybrid framework based on lexicon and machine learning approaches. International Journal of Computers and Applications, 43(8), 786–794. https://doi.org/10.1080/1206212X.2019.1615250
Firdaniza, F., Ruchjana, B., Chaerani, D., & Radianti, J. (2021). Information Diffusion Model in Twitter: A Systematic Literature Review. Information, 13(1), 13. https://doi.org/10.3390/info13010013
Gorissen, B. L., Yanıkoğlu, İ., & den Hertog, D. (2015). A practical guide to robust optimization. Omega, 53, 124–137. https://doi.org/10.1016/j.omega.2014.12.006
Hertog, D. den. (2013). Practical Robust Optimization: an Introduction.
Janjanam, P., & Reddy, C. H. P. (2019). Text summarization: An essential study. ICCIDS 2019 - 2nd International Conference on Computational Intelligence in Data Science, Proceedings, 1–6. https://doi.org/10.1109/ICCIDS.2019.8862030
Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining: The ASA Data Science Journal, 1–8. https://doi.org/10.1002/sam.11583
Kannan, S., Gurusamy, V., Vijayarani, S., Ilamathi, J., & Nithya, M. (2015). Preprocessing Techniques for Text Mining Preprocessing Techniques for Text Mining. International Journal of Computer Science & Communication Networks, 5(October 2014), 7–16. https://doi.org/2249-5789
Kumar, R., Pannu, H. S., & Malhi, A. K. (2020). Aspect-based sentiment analysis using deep networks and stochastic optimization. Neural Computing and Applications, 32(8), 3221–3235. https://doi.org/10.1007/s00521-019-04105-z
Kurniawati, Khadapi, M., Riana, D., Arfian, A., Rahmawati, E., & Heriyanto. (2020). Public Acceptance Of Pedulilindungi Application In The Acceleration Of Corona Virus (Covid-19) Handling. Journal of Physics: Conference Series, 1641(1), 012026. https://doi.org/10.1088/1742-6596/1641/1/012026
Liu, B. (2012). Sentiment Analysis and Opinion Mining. Morgan & Claypool.
M, H., & M.N, S. (2015). A Review on Evaluation Metrics for Data Classification Evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 01–11. https://doi.org/10.5121/ijdkp.2015.5201
Priya, V., & Umamaheswari, K. (2019). Enhanced continuous and discrete multi objective particle swarm optimization for text summarization. Cluster Computing, 22(S1), 229–240. https://doi.org/10.1007/s10586-018-2674-1
Rao, S. S. (2009). Engineering Optimization: Theory and Practice. John Wiley & Sons, Inc.
Saadah, M. N., Atmagi, R. W., Rahayu, D. S., & Arifin, A. Z. (2013). Information Retrieval Of Text Document With Weighting TF-IDF and LCS. Jurnal Ilmu Komputer Dan Informasi, 6(1), 34. https://doi.org/10.21609/jiki.v6i1.216
Suthaharan, S. (2016). Support Vector Machine (pp. 207–235). Springer. https://doi.org/10.1007/978-1-4899-7641-3_9
Vakili, M., Ghamsari, M., & Rezaei, M. (2020). Performance Analysis and Comparison of Machine and Deep Learning Algorithms for IoT Data Classification. https://doi.org/https://doi.org/10.48550/
Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. Springer New York. https://doi.org/10.1007/978-1-4757-3264-1
Yang, X.-S. (2014). Multi-Objective Optimization. In Nature-Inspired Optimization Algorithms (pp. 197–211). Elsevier. https://doi.org/10.1016/B978-0-12-416743-8.00014-2
DOI: https://doi.org/10.31764/jtam.v6i3.8624
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Alfia Azizah Fatimathuzahra, Diah Chaerani, Firdaniza Firdaniza
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: