The Effect of Susceptible Immigrants in a System Dynamic on the Spread of Malaria in Indonesia

Euis Aprianti, Jaharuddin Jaharuddin, Endar H. Nugrahani

Abstract


The spread of malaria is a serious public health problem, including in Indonesia. The mathematical model is formulated to describe the dynamic nature of the spread of malaria. The model used in this article is the SIR-SI model. This article discusses the stability of the fixed point analyzed using the Jacobian matrix and Routh-Hurwitz criteria, bifurcation analysis using the Castillo-Chaves and Song Theorem, and numerical simulation of the effect of the rate of susceptible immigrants on the dynamics of the malaria by using data on malaria cases in Indonesia. The results of the analysis show that the stability of the fixed point is related to the basic reproduction number determined by the next-generation matrix, and bifurcation occurs when the basic reproduction number is equal to one. The results of numerical simulations show that in order to suppress the spread of malaria, it is necessary to reduce the rate of susceptible immigrants.

 


Keywords


Basic Reproduction Number; Bifurcation; Malaria; Stability; Susceptible Immigrants;

Full Text:

DOWNLOAD [PDF]

References


Brauer, F., & Castillo-Chavez, C. (2012). Mathematical Models in Population Biology and Epidemiology (2nd ed., Vol. 40). Springer. https://doi.org/10.1007/978-1-4614-1686-9

Castillo-Chavez, C., & Song, B. (2004). Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences and Engineering, 1(2), 361–404. https://doi.org/10.3934/mbe.2004.1.361

Edelstein-Keshet, L. (2005). Mathematical Models in Biology. SIAM.

Giesecke, J. (2017). Modern infectious disease epidemiology (3rd ed.). CRC Pr.

Jayani, D. H. (2019). 2015-2045: Angka Kematian Terus Naik, Angka Kelahiran Relatif Stabil | Databoks. Databoks. https://databoks.katadata.co.id/datapublish/2019/07/18/2015-2045-angka-kematian-terus-naik-angka-kelahiran-relatif-stabil#

Juliawan, K. D. (2019). RTS, S/AS01 sebagai Vaksin Malaria Generasi Pertama. Jurnal Ilmiah Kesehatan Sandi Husada, 10(2), 275–280. https://doi.org/10.35816/jiskh.v10i2.170

KEMENKES RI. (2018). Laporan Nasional RISKESDAS 2018. KEMENKES RI.

KEMENKES RI. (2020). Rencana Aksi Keiatan (RAK) 2020-2024 (p. 91). KEMENKES RI.

Martens, P., & Hall, L. (2000). Malaria on the Move: Human Population Movement and Malaria Transmission. Emerging Infectious Diseases, 6(2), 103–109. https://doi.org/10.3201/eid0602.000202

Ndii, M. Z. (2022). Pemodelan Matematika. Penerbit NEM.

Nurhakim, F. (2021). Kasus Malaria Masih Jadi Persoalan di Propinsi ini. Gatra.Com. https://www.gatra.com/detail/news/510015/kesehatan/kasus-malaria-masih-jadi-persoalan-di-propinsi-ini

Nurmaliani, R., & Arisanti, M. (2021). Efektivitas Kelambu Berinsektisida dalam Pengendalian Vektor Malaria di Indonesia. SPIRAKEL, 13(2), 70–77. https://doi.org/10.22435/spirakel.v13i2.5616

Phillips, M. A., Burrows, J. N., Manyando, C., van Huijsduijnen, R. H., Van Voorhis, W. C., & Wells, T. N. C. (2017). Malaria. Nature Reviews Disease Primers, 3(1), 1–24. https://doi.org/10.1038/nrdp.2017.50

Putri, R. G., Jaharuddin, & Bakhtiar, T. (2014). Sirs-Si Model of Malaria Disease with Application of Vaccines, Anti-Malarial Drugs, and Spraying. IOSR Journal of Mathematics, 10(5), 66–72. https://doi.org/10.9790/5728-10526672

Rahmawati, E., Hadi, U., & Soviana, S. (2014). Keanekaragaman jenis dan perilaku menggigit vektor malaria (Anopheles spp.) di Desa Lifuleo, Kecamatan Kupang Barat, Kabupaten Kupang, Nusa Tenggara Timur. Jurnal Entomologi Indonesia, 11(2), 53–64. https://doi.org/10.5994/jei.11.2.53

Rosiana, N., Soblia, H. T., Prabawa, P. D., & Firdaus, P. I. (2020). Profil Migran Hasil Survei Sosial Ekonomi Nasional 2019. Badan Pusat Statistik.

Triyudha, A. (2020). Mengatasi Ancaman Malaria. Harnas.Co. http://www.harnas.co/2020/05/01/mengatasi-ancaman-malaria

Tumwiine, J., Mugisha, J. Y. T., & Luboobi, L. S. (2007). A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity. Applied Mathematics and Computation, 189(2), 1953–1965. https://doi.org/10.1016/j.amc.2006.12.084

van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1–2), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6

Wedajo, A. G., Bole, B. K., & Koya, P. R. (2018). The Impact of Susceptible Human Immigrants on the Spread and Dynamics of Malaria Transmission. American Journal of Applied Mathematics, 6(3), 117–127. https://doi.org/10.11648/j.ajam.20180603.13

World Health Organization. (2020). World malaria report 2020: 20 years of global progress and challenges. WHO.




DOI: https://doi.org/10.31764/jtam.v6i3.8630

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Euis Aprianti, Jaharuddin, Endar H. Nugrahani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: